James Runt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6525423/publications.pdf

Version: 2024-02-01

		28736	5	53065
184	9,516	57		89
papers	citations	h-index		g-index
105	105	105		7005
185	185	185		7895
all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	Assessment of a Siloxane Poly(urethaneâ€urea) Elastomer Designed for Implantable Heart Valve Leaflets. Advanced NanoBiomed Research, 2021, 1, 2000032.	1.7	22
2	Oxygen barrier, free volume, and blending properties of fully bioâ€based polyamide 11/poly(vinyl) Tj ETQq0 0 0 r	gB <u>T./</u> Over	lock 10 Tf 50
3	Sodium Hexametaphosphateâ€Modified Thermoplastic Starch Materials Prepared with the Assistance of Supercritical CO ₂ . Starch/Staerke, 2020, 72, 1900055.	1.1	1
4	Fabrication of biocomposite membrane with microcrystalline cellulose (MCC) extracted from sugarcane bagasse by phase inversion method. Cellulose, 2020, 27, 1367-1384.	2.4	33
5	A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Science Advances, 2020, 6, eaax6622.	4.7	184
6	Ion Transport in Pendant and Backbone Polymerized Ionic Liquids. Macromolecules, 2019, 52, 6438-6448.	2.2	30
7	Tapioca/polyvinyl alcohol thermoplastic starch materials processed with the aid of supercritical CO2. Food Packaging and Shelf Life, 2019, 22, 100425.	3.3	5
8	Moistureâ€resistant and strength retention properties of supercritical CO ₂ â€processed thermoplastic starch modified by polyvinyl alcohol with varying degrees of polymerization. Polymers for Advanced Technologies, 2019, 30, 772-789.	1.6	5
9	Utilization of supercritical CO 2 as a processing aid for preparation of ultrahigh molecular weight polyethylene/functionalized activated nanocarbon fibers. Polymer Engineering and Science, 2019, 59, 1462-1471.	1.5	7
10	Oxygen barrier, free volume and miscibility properties of fully bio-based polyamide 1010/poly(vinyl) Tj ETQq0 0 C	rgBT /Ov	erlogk 10 Tf 50
11	Sulfonation of dialdehyde cellulose extracted from sugarcane bagasse for synergistically enhanced water solubility. Carbohydrate Polymers, 2019, 208, 314-322.	5.1	54
12	Regeneration and utilization of waste phenolic formaldehyde resin: A performance investigation. Journal of Applied Polymer Science, 2019, 136, 47445.	1.3	4
13	Oxygen barrier, free volume, and blending properties of polyamide 12/poly (vinyl alcohol) blends. Polymers for Advanced Technologies, 2018, 29, 1649-1660.	1.6	6
14	Thermoplastic starch and glutaraldehyde modified thermoplastic starch foams prepared using supercritical carbon dioxide fluid as a blowing agent. Polymers for Advanced Technologies, 2018, 29, 2643-2654.	1.6	10
15	Introducing Large Counteranions Enhances the Elastic Modulus of Imidazolium-Based Polymerized Ionic Liquids. Macromolecules, 2018, 51, 4129-4142.	2.2	17
16	Molecular influence in the glass/polymer interface design: The role of segmental dynamics. Polymer, 2018, 146, 222-229.	1.8	17
17	Molecular Dynamics of Polyfarnesene. Macromolecules, 2018, 51, 4917-4922.	2.2	21
18	Properties of polyamide 6,10/poly(vinyl alcohol) blends and impact on oxygen barrier performance. Polymer International, 2018, 67, 453-462.	1.6	8

#	Article	IF	CITATIONS
19	Properties of polyamide 612/poly(vinyl alcohol) blends and their impact on free volume and oxygen barrier properties. Journal of Polymer Research, 2018, 25, 1.	1.2	4
20	Environmental stress cracking performance of polyether and PDMSâ€based polyurethanes in an <i>in vitro</i> oxidation model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 1544-1558.	1.6	13
21	Crystalline microstructure and dielectric properties of oriented poly(ethylene-co-tetrafluoroethylene). Polymer, 2017, 113, 1-8.	1.8	9
22	Generating high dielectric constant blends from lower dielectric constant dipolar polymers using nanostructure engineering. Nano Energy, 2017, 32, 73-79.	8.2	89
23	Controlling Crystal Microstructure To Minimize Loss in Polymer Dielectrics. Macromolecules, 2017, 50, 8083-8096.	2.2	11
24	Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers. Nanoscale, 2017, 9, 10992-10997.	2.8	216
25	Polymerized Ionic Liquids: Correlation of Ionic Conductivity with Nanoscale Morphology and Counterion Volume. ACS Macro Letters, 2017, 6, 941-946.	2.3	65
26	The biostability of cardiac lead insulation materials as assessed from longâ€term human implants. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 411-421.	1.6	26
27	Microstructure evolution of poly[tetrafluoroethylene-co-(perfluoropropylvinylether)] films under uniaxial deformation. Polymer, 2016, 99, 480-487.	1.8	4
28	Fluoropolymer microstructure and dynamics: Influence of molecular orientation induced by uniaxial drawing. Polymer, 2016, 91, 211-221.	1.8	9
29	Charge Transport of Polyester Ether Ionomers in Unidirectional Silica Nanopores. ACS Macro Letters, 2016, 5, 476-480.	2.3	11
30	Segmental Dynamics of Ethylene Oxide-Containing Polymers with Diverse Backbone Chemistries. Macromolecules, 2016, 49, 1903-1910.	2.2	13
31	Segmental Dynamics and Dielectric Constant of Polysiloxane Polar Copolymers as Plasticizers for Polymer Electrolytes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3215-3225.	4.0	73
32	Light weight high temperature polymer film capacitors with dielectric loss lower than polypropylene. Journal of Materials Science: Materials in Electronics, 2015, 26, 9396-9401.	1.1	19
33	Molecular Volume Effects on the Dynamics of Polymerized Ionic Liquids and their Monomers. Electrochimica Acta, 2015, 175, 55-61.	2.6	76
34	lonic aggregate dissolution and conduction in a plasticized single-ion polymer conductor. Polymer, 2015, 59, 133-143.	1.8	44
35	Dynamics of Precise Ethylene Ionomers Containing Ionic Liquid Functionality. Macromolecules, 2015, 48, 410-420.	2.2	42
36	Synthesis, Morphology, and Ion Conduction of Polyphosphazene Ammonium Iodide Ionomers. Macromolecules, 2015, 48, 111-118.	2.2	27

#	Article	IF	CITATIONS
37	Ion States and Transport in Styrenesulfonate Methacrylic PEO ₉ Random Copolymer Ionomers. Macromolecules, 2015, 48, 7273-7285.	2.2	37
38	Plasticizing Li single-ion conductors with low-volatility siloxane copolymers and oligomers containing ethylene oxide and cyclic carbonates. Journal of Materials Chemistry A, 2015, 3, 21269-21276.	5.2	24
39	Polyurethanes containing a crystalline polyol and semiflexible urethane segments. Journal of Applied Polymer Science, $2015,132,.$	1.3	1
40	The role of diisocyanate structure on microphase separation of solution polymerized polyureas. Polymer, 2014, 55, 906-913.	1.8	45
41	Dielectric and Viscoelastic Responses of Imidazolium-Based Ionomers with Different Counterions and Side Chain Lengths. Macromolecules, 2014, 47, 777-790.	2.2	179
42	Block architecture influence on the structure and mechanical performance of drawn polyurethane elastomers. Polymer International, 2014, 63, 1278-1287.	1.6	12
43	High Ion Content Siloxane Phosphonium Ionomers with Very Low <i>T</i> _g . Macromolecules, 2014, 47, 4428-4437.	2.2	48
44	Influence of Solvating Plasticizer on Ion Conduction of Polysiloxane Single-Ion Conductors. Macromolecules, 2014, 47, 3145-3153.	2.2	63
45	Physical aging of polymers of intrinsic microporosity: a SAXS/WAXS study. Journal of Materials Chemistry A, 2014, 2, 11742-11752.	5.2	71
46	Linear Viscoelasticity and Fourier Transform Infrared Spectroscopy of Polyether–Ester–Sulfonate Copolymer Ionomers. Macromolecules, 2014, 47, 3635-3644.	2.2	47
47	Influence of mixed soft segments on microphase separation of polyurea elastomers. Polymer, 2014, 55, 1837-1844.	1.8	58
48	Effect of Thermal History on the Microstructure of a Poly(tetramethylene oxide)-Based Polyurea. Macromolecules, 2013, 46, 6520-6527.	2.2	49
49	Coarse-grained Molecular-level Analysis of Polyurea Properties and Shock-mitigation Potential. Journal of Materials Engineering and Performance, 2013, 22, 1964-1981.	1.2	41
50	Polymerized Ionic Liquids with Enhanced Static Dielectric Constants. Macromolecules, 2013, 46, 1175-1186.	2.2	126
51	Molecular Dynamics of Segmented Polyurethane Copolymers: Influence of Soft Segment Composition. Macromolecules, 2013, 46, 4184-4190.	2.2	68
52	Characterizing the Structure of Organic Molecules of Intrinsic Microporosity by Molecular Simulations and X-ray Scattering. Journal of Physical Chemistry B, 2013, 117, 355-364.	1.2	51
53	Molecular Mobility and Cation Conduction in Polyether–Ester–Sulfonate Copolymer Ionomers. Macromolecules, 2012, 45, 3962-3973.	2.2	67
54	Concept-Level Analysis and Design of Polyurea for Enhanced Blast-Mitigation Performance. Journal of Materials Engineering and Performance, 2012, 21, 2024-2037.	1.2	52

#	Article	IF	Citations
55	Microstructure and Segmental Dynamics of Polyurea under Uniaxial Deformation. Macromolecules, 2012, 45, 3581-3589.	2.2	105
56	Synthesis of triblock copolymers composed of poly(vinylidene fluoride-co-hexafluoropropylene) and ionic liquid segments. Journal of Materials Chemistry, 2012, 22, 341-344.	6.7	28
57	Synthesis and Lithium Ion Conduction of Polysiloxane Single-Ion Conductors Containing Novel Weak-Binding Borates. Chemistry of Materials, 2012, 24, 2316-2323.	3.2	129
58	The Role of Soft Segment Molecular Weight on Microphase Separation and Dynamics of Bulk Polymerized Polyureas. Macromolecules, 2012, 45, 8438-8444.	2.2	127
59	Potential Improvements in Shock-Mitigation Efficacy of a Polyurea-Augmented Advanced Combat Helmet. Journal of Materials Engineering and Performance, 2012, 21, 1562-1579.	1.2	45
60	Influence of Cation Type on Structure and Dynamics in Sulfonated Polystyrene Ionomers. Macromolecules, 2011, 44, 5420-5426.	2.2	49
61	Structure and Dynamics of Zinc-Neutralized Sulfonated Polystyrene Ionomers. Macromolecules, 2011, 44, 2791-2798.	2.2	63
62	The Role of Hard Segment Content on the Molecular Dynamics of Poly(tetramethylene oxide)-Based Polyurethane Copolymers. Macromolecules, 2011, 44, 7831-7836.	2.2	88
63	Structural Characterization of a Polymer of Intrinsic Microporosity: X-ray Scattering with Interpretation Enhanced by Molecular Dynamics Simulations. Macromolecules, 2011, 44, 14-16.	2.2	76
64	Segmented polyurethanes derived from novel siloxane–carbonate soft segments for biomedical applications. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 865-872.	2.4	38
65	Novel Hard-Block Polyurethanes with High Strength and Transparency for Biomedical Applications. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 973-980.	1.9	12
66	Development and parameterization of a time-invariant (equilibrium) material model for segmented elastomeric polyureas. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2011, 225, 182-194.	0.7	9
67	Dynamics of hydrated polyurethane biomaterials: Surface microphase restructuring, protein activity and platelet adhesion. Acta Biomaterialia, 2010, 6, 1938-1947.	4.1	37
68	Microstructural organization of polydimethylsiloxane soft segment polyurethanes derived from a single macrodiol. Polymer, 2010, 51, 4375-4382.	1.8	106
69	Microstructure and Dynamics of Semicrystalline Poly(ethylene oxide)â^Poly(vinyl acetate) Blends. Macromolecules, 2010, 43, 1028-1034.	2.2	49
70	Local Relaxation Behavior and Dynamic Fragility in Hydrogen Bonded Polymer Blends. Macromolecules, 2010, 43, 9004-9013.	2,2	27
71	Dielectric Relaxation Spectroscopy of Gradient Copolymers and Block Copolymers: Comparison of Breadths in Relaxation Time for Systems with Increasing Interphase. Macromolecules, 2010, 43, 5740-5748.	2.2	31

Dynamics of Polymer Blends of a Strongly Interassociating Homopolymer with Poly(vinyl methyl) Tj ETQq0.00 rgBT/Qverlock 10 Tf 50.60

#	Article	IF	CITATIONS
73	Dynamics of Uniaxially Oriented Elastomers Using Broadband Dielectric Spectroscopy. Macromolecules, 2010, 43, 3125-3127.	2.2	12
74	Dynamics of main-chain liquid crystalline polysiloxanes containing p-phenyleneterephthalate mesogens. Journal of Non-Crystalline Solids, 2010, 356, 578-581.	1.5	3
75	Influence of the Degree of Sulfonation on the Structure and Dynamics of Sulfonated Polystyrene Copolymers. Macromolecules, 2010, 43, 10498-10504.	2.2	52
76	Dynamics of concentrated solutions of low molecular weight phenolics and poly(2-vinylpyridine): Role of intermolecular hydrogen bonding. Polymer, 2009, 50, 2424-2435.	1.8	6
77	Influence of soft segment composition on phase-separated microstructure of polydimethylsiloxane-based segmented polyurethane copolymers. Polymer, 2009, 50, 2320-2327.	1.8	124
78	Temperature dependent microphase mixing of model polyurethanes with different intersegment compatibilities. Polymer, 2009, 50, 6305-6311.	1.8	67
79	An Infrared Spectrocopic Study of a Polyester Copolymer Ionomer Based on Poly(ethylene oxide). Macromolecules, 2009, 42, 6581-6587.	2.2	45
80	Polydimethylsiloxane-Based Polyurethanes: Phase-Separated Morphology and In Vitro Oxidative Biostability. Australian Journal of Chemistry, 2009, 62, 794.	0.5	25
81	Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Over	lock 10 Tf	50,422 Td (f
82	Dynamics of Poly(vinylmethyl ether) Blends with a Strongly Interassociating Copolymer. Macromolecular Symposia, 2009, 279, 221-227.	0.4	4
83	Molecular Mobility, Ion Mobility, and Mobile Ion Concentration in Poly(ethylene oxide)-Based Polyurethane Ionomers. Macromolecules, 2008, 41, 5723-5728.	2.2	181
84	A Comparison of Phase Organization of Model Segmented Polyurethanes with Different Intersegment Compatibilities. Macromolecules, 2008, 41, 9767-9776.	2.2	154
85	Characterization of surface microphase structures of poly(urethane urea) biomaterials by nanoscale indentation with AFM. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 353-368.	1.9	17
86	Ion Conduction and Polymer Dynamics of Poly(2-vinylpyridine)-Lithium Perchlorate Mixtures. Journal of Physical Chemistry B, 2007, 111, 13483-13490.	1.2	13
87	Plasticized Single-Ion Polymer Conductors:Â Conductivity, Local and Segmental Dynamics, and Interaction Parameters. Journal of Physical Chemistry B, 2007, 111, 13188-13193.	1.2	37
88	Dynamics of Sulfonated Polystyrene Ionomers Using Broadband Dielectric Spectroscopy. Macromolecules, 2007, 40, 991-996.	2.2	37
89	Counterion Effects on Ion Mobility and Mobile Ion Concentration of Doped Polyphosphazene and Polyphosphazene Ionomers. Macromolecules, 2007, 40, 3990-3995.	2.2	74
90	Microstructural Organization of Three-Phase Polydimethylsiloxane-Based Segmented Polyurethanes. Macromolecules, 2007, 40, 5441-5449.	2.2	136

#	Article	IF	CITATIONS
91	Potential sources of error in the calorimetric evaluation of amylose content of starches. Carbohydrate Polymers, 2007, 68, 465-471.	5.1	10
92	Atomic force microscopy visualization of poly(urethane urea) microphase rearrangements under aqueous environment. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 227-238.	1.9	17
93	Synthesis and Characterization of Poly(Ethylene Glycol)-Based Single-Ion Conductors. Chemistry of Materials, 2006, 18, 4288-4295.	3.2	122
94	Modeling electrode polarization in dielectric spectroscopy: lon mobility and mobile ion concentration of single-ion polymer electrolytes. Journal of Chemical Physics, 2006, 124, 144903.	1.2	403
95	Amylose Crystallization from Concentrated Aqueous Solution. Biomacromolecules, 2006, 7, 761-770.	2.6	58
96	Dynamics of Sulfonated Polystyrene Copolymers Using Broadband Dielectric Spectroscopy. Macromolecules, 2006, 39, 1815-1820.	2.2	40
97	Spherulitic Crystallization in Starch as a Model for Starch Granule Initiation. Biomacromolecules, 2005, 6, 1547-1554.	2.6	65
98	Effect of Temperature and Pressure on the Dynamic Miscibility of Hydrogen-Bonded Polymer Blends. Macromolecules, 2005, 38, 552-560.	2.2	34
99	Glass transition and ionic conduction in plasticized and doped ionomers. Journal of Non-Crystalline Solids, 2005, 351, 2825-2830.	1.5	79
100	Human foetal osteoblastic cell response to polymer-demixed nanotopographic interfaces. Journal of the Royal Society Interface, 2005, 2, 97-108.	1.5	162
101	Composition-dependent dynamics in miscible polymer blends: influence of intermolecular hydrogen bonding. Polymer, 2004, 45, 3933-3942.	1.8	46
102	Segmental and secondary dynamics in hydrogen-bonded poly(4-vinylphenol)/poly(methyl methacrylate) blends. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 3405-3415.	2.4	19
103	P(VDF-TrFE)-layered silicate nanocomposites. Part 1. X-ray scattering and thermal analysis studies. Polymer, 2004, 45, 1923-1932.	1.8	35
104	Segmental Dynamics and Ionic Conduction in Poly(vinyl methyl ether)â^'Lithium Perchlorate Complexes. Journal of Physical Chemistry B, 2004, 108, 6295-6302.	1.2	48
105	Suppression of the Dielectric Secondary Relaxation of Poly(2-vinylpyridine) by Strong Intermolecular Hydrogen Bonding. Macromolecules, 2004, 37, 2636-2642.	2.2	35
106	Broadband Dielectric Investigation of Amorphous Poly(methyl methacrylate)/Poly(ethylene oxide) Blends. Macromolecules, 2004, 37, 8110-8115.	2,2	67
107	Broadband Dielectric Investigation on 2,6-Dihydroxynaphthalene/Poly(vinyl ethyl ether) Mixtures. Journal of Physical Chemistry B, 2004, 108, 7681-7687.	1.2	9
108	Dielectric Studies of Blends of Poly(ethylene oxide) and Poly(styrene-co-p-hydroxystyrene). Semicrystalline Blends. Macromolecules, 2004, 37, 4808-4814.	2,2	10

#	Article	IF	CITATIONS
109	Broadband Dielectric Investigation of Amorphous and Semicrystallinel-Lactide/meso-Lactide Copolymers. Macromolecules, 2004, 37, 863-871.	2.2	44
110	Crystallization and structure formation of poly(l-lactide-co-meso-lactide) random copolymers: a time-resolved wide- and small-angle X-ray scattering study. Polymer, 2003, 44, 711-717.	1.8	79
111	Phase separation of diamine chain-extended poly(urethane) copolymers: FTIR spectroscopy and phase transitions. Polymer, 2003, 44, 2711-2719.	1.8	164
112	Dielectric Studies of Poly(ethylene oxide)/Poly(styrene-co-p-hydroxystyrene) Blends:Â Influence of Hydrogen Bonding on the Dynamics of Amorphous Blends. Macromolecules, 2003, 36, 8033-8039.	2.2	31
113	Solid-State Microstructure of Poly(l-lactide) and l-Lactide/meso-Lactide Random Copolymers by Atomic Force Microscopy (AFM). Biomacromolecules, 2003, 4, 1203-1213.	2.6	34
114	Dynamical Heterogeneity in the Thermodynamically Miscible Polymer Blend of Poly(vinyl ethyl ether) and Styrene-co-p-hydroxystyrene Copolymer. Macromolecules, 2003, 36, 5710-5718.	2.2	28
115	Influence of Crystallization Conditions on the Microstructure and Electromechanical Properties of Poly(vinylidene fluorideâ 'trifluoroethyleneâ 'chlorofluoroethylene) Terpolymers. Macromolecules, 2003, 36, 7220-7226.	2.2	116
116	Dynamic Homogeneity in Mixtures of Poly(vinyl methyl ether) with Low Molecular Weight Phenolic Molecules. Macromolecules, 2003, 36, 7179-7188.	2.2	18
117	Pressure Effects on the Segmental Dynamics of Hydrogen-Bonded Polymer Blends. Macromolecules, 2003, 36, 9917-9923.	2.2	34
118	Crystallization and structure formation in polymer blends with strong intermodular interactions: blends of poly(ethylene oxide) and styrene-hydroxystyrene copolymers. Macromolecular Symposia, 2003, 198, 29-40.	0.4	2
119	Influence of Preparation Conditions on Microdomain Formation in Poly(urethane urea) Block Copolymers. Macromolecules, 2002, 35, 161-168.	2.2	94
120	Coupling of Component Segmental Relaxations in a Polymer Blend Containing Intermolecular Hydrogen Bonds. Macromolecules, 2002, 35, 9403-9413.	2.2	58
121	Broad-Band Dielectric Study on Poly(4-vinylphenol)/Poly(ethyl methacrylate) Blends. Macromolecules, 2002, 35, 3636-3646.	2.2	50
122	Supramolecular morphology of two-step, melt-spun poly(lactic acid) fibers. Journal of Applied Polymer Science, 2002, 86, 2828-2838.	1.3	80
123	Effects of molecular architecture on two-step, melt-spun poly(lactic acid) fibers. Journal of Applied Polymer Science, 2002, 86, 2839-2846.	1.3	83
124	Observation of a fast dielectric relaxation in semi-crystalline poly(ethylene oxide). Polymer, 2002, 43, 6247-6254.	1.8	89
125	Dynamics of Polymer Blends with Intermolecular Hydrogen Bonding:Â Broad-Band Dielectric Study of Blends of Poly(4-vinyl phenol) with Poly(vinyl acetate) and EVA70. Macromolecules, 2002, 35, 8478-8487.	2.2	57
126	New Biomedical Poly(urethane urea)â^'Layered Silicate Nanocomposites. Macromolecules, 2001, 34, 337-339.	2.2	327

#	Article	IF	CITATIONS
127	Microdomain Morphology of Poly(urethane urea) Multiblock Copolymers. Macromolecules, 2001, 34, 7066-7070.	2.2	174
128	Solid-State Structure of Poly(lactide) Copolymers. ACS Symposium Series, 2001, , 221-229.	0.5	0
129	Crystallization and Solid-State Structure of Random Polylactide Copolymers: Poly(l-lactide-co-d-lactide)s. Macromolecules, 2001, 34, 4857-4864.	2.2	133
130	Microphase Separation of Segmented Poly(urethane urea) Block Copolymers. Macromolecules, 2000, 33, 6353-6359.	2.2	216
131	Crystallization Behavior of Poly(ethylene oxide) and Its Blends Using Time-Resolved Wide- and Small-Angle X-ray Scattering. Macromolecules, 2000, 33, 4842-4849.	2.2	66
132	Synthesis and Characterization of Amphiphilic Poly(urethaneurea)-comb-polyisobutylene Copolymers. Macromolecules, 2000, 33, 4380-4389.	2.2	18
133	In Vivo and in Vitro Stability of Modified Poly(Urethaneurea) Blood Sacs. Journal of Biomaterials Applications, 2000, 14, 349-366.	1.2	12
134	Crystallization and Solid-State Structure of Model Poly(ethylene oxide) Blends. ACS Symposium Series, 1999, , 218-231.	0.5	0
135	An investigation of thein vivo stability of poly(ether urethaneurea) blood sacs. Journal of Biomedical Materials Research Part B, 1999, 44, 371-380.	3.0	28
136	Crystallization of Poly(ethylene oxide) and Melt-Miscible PEO Blends. Macromolecules, 1999, 32, 1576-1581.	2.2	59
137	Microstructure Development and Crystallization of Poly(ethylene oxide) and Melt-Miscible PEO Blends. Macromolecules, 1998, 31, 1627-1634.	2.2	33
138	Crystallization and Microstructure of Poly(l-lactide-co-meso-lactide) Copolymers. Macromolecules, 1998, 31, 2593-2599.	2.2	177
139	Microstructure of Melt-Miscible, Semicrystalline Polymer Blends. Macromolecules, 1996, 29, 7527-7535.	2.2	154
140	Crystalline Homopolymer-Copolymer Blends: Poly(tetrafluoroethylene)-Poly(tetrafluoroethylene-co-perfluoroalkylvinyl ether). Macromolecules, 1995, 28, 2781-2786.	2.2	42
141	Poly(butylene terephthalate)–polyarylate blends. Polymers for Advanced Technologies, 1994, 5, 333-338.	1.6	9
142	A measure theoretic derivation of Richardson's equation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 186, L5-L6.	2.6	0
143	Segmental relaxation in blends of polychloroprene and epoxidized polyisoprene. Macromolecules, 1994, 27, 5382-5386.	2.2	28
144	Crystallization of poly(butylene terephthalate) and its blends with polyarylate. Macromolecules, 1992, 25, 1929-1934.	2.2	151

#	Article	IF	Citations
145	Transesterification in poly(butylene terephthalate)/polyarylate blends. Polymer, 1992, 33, 4643-4646.	1.8	34
146	Fatigue crack propagation in high-density polyethylene. Journal of Polymer Science, Part B: Polymer Physics, 1991, 29, 371-388.	2.4	60
147	Dielectric properties and cocrystallization of mixtures of poly(butylene terephthalate) and poly(ester-ether) segmented block copolymers [Erratum to document cited in CA111(20):175035c]. Macromolecules, 1990, 23, 912-912.	2.2	17
148	Effect of crystalline morphology on fatigue crack propagation in polyethylene. Journal of Materials Science, 1989, 24, 1421-1428.	1.7	42
149	0–3 ceramic/polymer composite chemical sensors. Sensors and Actuators, 1989, 20, 269-275.	1.8	71
150	Fatigue crack-propagation in annealed poly(butylene terephthalate). Journal of Materials Science, 1989, 24, 2637-2642.	1.7	16
151	Multiple melting in annealed poly(butlene terephthalate). Journal of Polymer Science, Part B: Polymer Physics, 1989, 27, 1543-1550.	2.4	124
152	Dielectric properties and cocrystallization of mixtures of poly(butylene terephthalate) and poly(ester-ether) segmented block copolymers. Macromolecules, 1989, 22, 3908-3913.	2.2	31
153	Thin film 0–3 polymer/piezoelectric ceramic composites: Piezoelectric paints. Ferroelectrics, 1989, 100, 255-260.	0.3	61
154	A dielectric study of poly(ethylene-co-vinyl acetate)-poly(vinyl chloride) blends. III. Direct current conductivity and electrode polarization. Journal of Polymer Science, Part B: Polymer Physics, 1988, 26, 1425-1438.	2.4	11
155	Dielectric properties of azo dye-poly(methyl methacrylate) mixtures. Macromolecules, 1987, 20, 1797-1801.	2.2	63
156	Ultimate elastic modulus and melting behavior of poly(oxymethylene). Macromolecules, 1987, 20, 2531-2535.	2.2	14
157	V2O3-Polymer Composite Thermistors. Journal of the American Ceramic Society, 1987, 70, 583-585.	1.9	52
158	Miscibility and melting in poly(ethylene terephthalate)/ poly(bisphenol-A-carbonate) blends. Polymer Bulletin, 1986, 15, 455.	1.7	80
159	A dielectric study of poly(ethylene-co-vinylacetate)–poly(vinyl chloride) blends. I. Miscibility and phase behavior. Journal of Polymer Science, Part B: Polymer Physics, 1986, 24, 279-302.	2.4	47
160	A dielectric study of poly(ethylene-co-vinyl acetate)–poly(vinyl chloride) blends. II. Loss curve broadening and correlation parameters. Journal of Polymer Science, Part B: Polymer Physics, 1986, 24, 313-324.	2.4	24
161	Pyroelectricity in 1–3 PZT/Polymer composites. Ferroelectrics, 1986, 68, 109-114.	0.3	7
162	Electroceramic-polymer composite thermistors. Ferroelectrics, 1986, 68, 115-121.	0.3	24

#	Article	IF	CITATIONS
163	TiO—epoxy composite thermistors. Phase Transitions, 1986, 7, 1-4.	0.6	20
164	Interfacial adhesion in PZT-epoxy composites. Ferroelectrics, 1986, 70, 205-212.	0.3	3
165	Miscibility and melting in poly(butylene terephthalate)/ poly(bisphenol A-carbonate) blends. Polymer Bulletin, 1985, 14, 399-406.	1.7	51
166	Mechanical behavior of poly(É>-caprolactone)/poly(styrene-co-acrylonitrile) blends. Journal of Applied Polymer Science, 1985, 30, 1545-1552.	1.3	7
167	Influence of morphology on the fatigue properties of polypropylene. Journal of Applied Polymer Science, 1985, 30, 4495-4498.	1.3	1
168	The influence of interfacial adhesion on the piezoelectric response of electroceramic/polymer composites. Ferroelectrics, Letters Section, 1985, 5, 15-20.	0.4	8
169	Piezoelectric composites of PZT and some semi-crystalline polymers. Materials Research Bulletin, 1984, 19, 253-260.	2.7	7
170	Polymer/piezoelectric ceramic composites: Polystyrene and poly(methyl methacrylate) with PZT. Journal of Applied Polymer Science, 1984, 29, 611-617.	1.3	20
171	Melting point elevation in compatible polymer blends. Polymer Bulletin, 1984, 11, 517-521.	1.7	16
172	An examination of the longitudinal acoustic mode of polyethylene crystals. Journal of Macromolecular Science - Physics, 1983, 22, 197-212.	0.4	7
173	Effect of preparation conditions on the development of crystallinity in compatible polymer blends: poly(styrene-co-acrylonitrile)/poly(il̂ μ -caprolactone). Macromolecules, 1982, 15, 1018-1023.	2.2	42
174	The effect of interlamellar forces on the longitudinal acoustic mode of polyethylene crystals. Journal of Polymer Science, Polymer Physics Edition, 1982, 20, 1687-1693.	1.0	7
175	Incompatible blends: Thermal effects in a model system. Journal of Polymer Science, Polymer Physics Edition, 1980, 18, 2257-2261.	1.0	24
176	Heat of fusion of polymer crystals: Thermodynamics of melting. Journal of Macromolecular Science - Physics, 1980, 17, 83-97.	0.4	2
177	Effect of mass perturbations on the LA mode of polymers: Surface bromination of polyethylene crystals. Journal of Macromolecular Science - Physics, 1980, 18, 83-91.	0.4	8
178	Heat of fusion of polyethylene crystal suspensions: Variation with crystallization temperature. Journal of Macromolecular Science - Physics, 1980, 17, 99-115.	0.4	13
179	The heat of fusion of polymer crystals: Polyethylene crystals in suspension. Journal of Polymer Science, Polymer Physics Edition, 1979, 17, 63-71.	1.0	8
180	The heating rate dependence of polymer melting points. Journal of Polymer Science, Polymer Physics Edition, 1979, 17, 321-328.	1.0	17

#	Article	IF	CITATIONS
181	On the location of chain ends in polyethylene single crystals. Journal of Polymer Science, Polymer Physics Edition, 1978, 16, 375-377.	1.0	6
182	Effect of polymorphism on the CiŁ; H stretching region of the infrared spectrum of polyethylene. Journal of Polymer Science, Polymer Physics Edition, 1978, 16, 1253-1260.	1.0	4
183	Fourier-transform infrared study of polyethylene single crystals in suspension. Journal of Polymer Science, Polymer Physics Edition, 1977, 15, 1647-1654.	1.0	13
184	The existence of mosaic block structures in polymer single crystals. Journal of Polymer Science, Polymer Physics Edition, 1976, 14, 317-322.	1.0	15