Ghada A Soliman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6525198/publications.pdf

Version: 2024-02-01

471061 301761 1,624 48 17 39 citations h-index g-index papers 50 50 50 2897 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dietary Fiber, Atherosclerosis, and Cardiovascular Disease. Nutrients, 2019, 11, 1155.	1.7	309
2	mTOR Ser-2481 Autophosphorylation Monitors mTORC-specific Catalytic Activity and Clarifies Rapamycin Mechanism of Action. Journal of Biological Chemistry, 2010, 285, 7866-7879.	1.6	189
3	Regulation of mTOR Complex 1 (mTORC1) by Raptor Ser863 and Multisite Phosphorylation. Journal of Biological Chemistry, 2010, 285, 80-94.	1.6	158
4	Site-Specific mTOR Phosphorylation Promotes mTORC1-Mediated Signaling and Cell Growth. Molecular and Cellular Biology, 2009, 29, 4308-4324.	1.1	141
5	Dietary Cholesterol and the Lack of Evidence in Cardiovascular Disease. Nutrients, 2018, 10, 780.	1.7	140
6	Sirolimus changes lipid concentrations and lipoprotein metabolism in kidney transplant recipients. Transplantation Proceedings, 2003, 35, S143-S150.	0.3	77
7	The integral role of mTOR in lipid metabolism. Cell Cycle, 2011, 10, 861-862.	1.3	74
8	The Role of Mechanistic Target of Rapamycin (mTOR) Complexes Signaling in the Immune Responses. Nutrients, 2013, 5, 2231-2257.	1.7	64
9	mTORC1 Inhibition via Rapamycin Promotes Triacylglycerol Lipolysis and Release of Free Fatty Acids in 3T3-L1 Adipocytes. Lipids, 2010, 45, 1089-1100.	0.7	54
10	Regulation of apolipoprotein B-containing lipoproteins by dietary soluble fiber in guinea pigs. American Journal of Clinical Nutrition, 1997, 65, 814-822.	2.2	51
11	The mammalian target of rapamycin signaling network and gene regulation. Current Opinion in Lipidology, 2005, 16, 317-323.	1.2	49
12	Rapamycin, an mTOR inhibitor, disrupts triglyceride metabolism in guinea pigs. Metabolism: Clinical and Experimental, 2006, 55, 794-802.	1.5	45
13	MDM2/p53 protein expression in the development of colorectal adenocarcinoma,. Journal of Gastrointestinal Surgery, 2000, 4, 109-114.	0.9	35
14	Higher levels of serum lycopene are associated with reduced mortality in individuals with metabolic syndrome. Nutrition Research, 2016, 36, 402-407.	1.3	23
15	A simple qPCR-based method to detect correct insertion of homologous targeting vectors in murine ES cells. Transgenic Research, 2007, 16, 665-670.	1.3	20
16	Quantification of Lutein + Zeaxanthin Presence in Human Placenta and Correlations with Blood Levels and Maternal Dietary Intake. Nutrients, 2019, 11, 134.	1.7	20
17	The influence of BMI on the association between serum lycopene and the metabolic syndrome. British Journal of Nutrition, 2016, 115, 1292-1300.	1.2	18
18	Hepatitis C virus and other risk factors in hepatocellular carcinoma. Acta Virologica, 2012, 56, 235-240.	0.3	17

#	Article	IF	Citations
19	Differential effects of simple vs. complex carbohydrates on VLDL secretion rates and HDL metabolism in the guinea pig. Lipids and Lipid Metabolism, 1995, 1256, 31-38.	2.6	16
20	Validation of using gene expression in mononuclear cells as a marker for hepatic cholesterol metabolism. Lipids in Health and Disease, 2006, 5, 22.	1.2	15
21	Effects of Metformin and a Mammalian Target of Rapamycin (mTOR) ATPCompetitive Inhibitor on Targeted Metabolomics in Pancreatic Cancer Cell Line. Metabolomics: Open Access, 2016, 6, .	0.1	11
22	Regulation of very low density lipoprotein apo B metabolism by dietary fat saturation and chain length in the guinea pig. Lipids, 1998, 33, 23-31.	0.7	10
23	A Sex-Specific Analysis of Nutrition Label Use and Health, Douglas County, Nebraska, 2013. Preventing Chronic Disease, 2015, 12, E158.	1.7	10
24	Neighbourhood exposure to point-of-sale price promotions for cigarettes is associated with financial stress among smokers: results from a population-based study. Tobacco Control, 2017, 26, 703-708.	1.8	10
25	Update of the Moroccan food composition tables: Towards a more reliable tool for nutrition research. Journal of Food Composition and Analysis, 2020, 87, 103397.	1.9	9
26	Stochastic Simulation of Cellular Metabolism. IEEE Access, 2020, 8, 79734-79744.	2.6	8
27	Longitudinal associations between body mass index, physical activity, and healthy dietary behaviors in adults: A parallel latent growth curve modeling approach. PLoS ONE, 2017, 12, e0173986.	1.1	8
28	Social Disparities in Exposure to Point-of-Sale Cigarette Marketing. International Journal of Environmental Research and Public Health, 2016, 13, 1263.	1.2	7
29	Causal association between mTOR-dependent EIF-4E and EIF-4A circulating protein levels and type 2 diabetes: a Mendelian randomization study. Scientific Reports, 2020, 10, 15737.	1.6	6
30	The Synergistic Effect of an ATP-Competitive Inhibitor of mTOR and Metformin on Pancreatic Tumor Growth. Current Developments in Nutrition, 2020, 4, nzaa131.	0.1	6
31	Point-of-sale cigarette marketing and smoking-induced deprivation in smokers: results from a population-based survey. BMC Public Health, 2016, 16, 302.	1.2	4
32	Longitudinal Associations Between BMI, Physical Activity, and Healthy Diet. Medicine and Science in Sports and Exercise, 2015, 47, 176.	0.2	4
33	A Retrospective Evaluation to Determine the Effectiveness of Public Health Leadership Institutes. Journal of Leadership Studies, 2017, 11, 6-19.	0.4	2
34	Wellness programme at the workplace promotes dietary change and improves health indicators in a longitudinal retrospective study. Public Health Nutrition, 2019, 22, 354-362.	1.1	2
35	Differences in MUC4 Expression in Pancreatic Cancers and Pancreatic Cysts in Egypt. Journal of Carcinogenesis & Mutagenesis, 2018, 09, .	0.3	2
36	Effect of Curcumin, Mixture of Curcumin and Piperine and Curcum (Turmeric) on Lipid Profile of Normal and Hyperlipidemic Rats. The Egyptian Journal of Hospital Medicine, 2005, 21, 145-161.	0.0	2

#	Article	IF	CITATIONS
37	Demographic differences in healthy food purchases in a corner store intervention. Journal of Hunger and Environmental Nutrition, 2018, 13, 531-539.	1.1	1
38	Smoking Households Give Less to Charity. Nonprofit and Voluntary Sector Quarterly, 2020, 49, 589-610.	1.3	1
39	Congenital Zika Syndrome. Topics in Clinical Nutrition, 2020, 35, 154-167.	0.2	1
40	Insulin Receptor Genetic Variants Causal Association with Type 2 Diabetes Mellitus: A Mendelian Randomization Study. Current Developments in Nutrition, 0, , .	0.1	1
41	Causal Association Between mTOR-Dependent eIF4E mRNA Cap-Dependent Translation and Type 2 Diabetes: A Mendelian Randomization Study (OR31-02-19). Current Developments in Nutrition, 2019, 3, nzz037.OR31-02-19.	0.1	O
42	Mitochondrial Bioenergetics Profile With Different Mechanistic Target of Rapamycin Complexes (mTORC1/mTORC2) Inhibitors in Pancreatic Beta-Cell Lines (Beta-TC-6). Current Developments in Nutrition, 2021, 5, 528.	0.1	0
43	Role of the mammalian Target of Rapamycin (mTOR) Complex 1 signaling in betaâ€adrenergicâ€stimulated triacylglycerol (TAG) lipolysis and free fatty acid (FFA) release in 3T3â€L1 adipocytes. FASEB Journal, 2008, 22, 1091.6.	0.2	O
44	Abstract B53: Effects of metformin and ATP-competitive inhibitor of mTOR on targeted-metabolomic profile in HPAF-II pancreatic cancer cell lines. , 2015, , .		0
45	Study of Serum Betatrophin Level in The Patients of Type 2 Diabetes Mellitus. The Egyptian Journal of Hospital Medicine, 2019, 74, 1809-1816.	0.0	О
46	The Interactions Between the Mechanistic Target of Rapamycin (Mtor) and the Microbiome. , 0, , .		0
47	Nutrition and cholesterol metabolism. , 2022, , 371-402.		O
48	Differential Effects of mTORC1 and mTORC2 Inhibition on High-Resolution Mass Spectrometry (HRMS) Metabolomics and the Internal Exposome in Pancreatic Beta Cell Lines. Current Developments in Nutrition, 2022, 6, 1126.	0.1	0