
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6524991/publications.pdf Version: 2024-02-01

ΡΛΟΙΑ ΡΙΛΝΙ

#	Article	IF	CITATIONS
1	A Study of the Pyrolysis Products of Kraft Lignin. Energies, 2022, 15, 991.	1.6	3
2	CO2 hydrogenation and ethanol steam reforming over Co/SiO2 catalysts: Deactivation and selectivity switches. Catalysis Today, 2021, 365, 122-131.	2.2	9
3	Ni/SiO2-Al2O3 catalysts for CO2 methanation: Effect of La2O3 addition. Applied Catalysis B: Environmental, 2021, 284, 119697.	10.8	59
4	Improvement of Ni/Al ₂ O ₃ Catalysts for Low-Temperature CO ₂ Methanation by Vanadium and Calcium Oxide Addition. Industrial & Engineering Chemistry Research, 2021, 60, 6554-6564.	1.8	20
5	A study of molybdena catalysts in ethanol oxidation. Part <scp>2</scp> . Aluminaâ€supported and silicaâ€doped aluminaâ€supported <scp>MoO₃</scp> . journal of Chemical Technology and Biotechnology, 2021, 96, 3304-3315.	1.6	2
6	Modification of the properties of γ-alumina as a support for nickel and molybdate catalysts by addition of silica. Catalysis Today, 2021, 378, 57-64.	2.2	11
7	A study of ethanol dehydrogenation to acetaldehyde over copper/zinc aluminate catalysts. Catalysis Today, 2020, 354, 167-175.	2.2	42
8	Support effects in metal catalysis: a study of the behavior of unsupported and silica-supported cobalt catalysts in the hydrogenation of CO2 at atmospheric pressure. Catalysis Today, 2020, 345, 213-219.	2.2	27
9	Reutilization of silicon- and aluminum- containing wastes in the perspective of the preparation of SiO2-Al2O3 based porous materials for adsorbents and catalysts. Waste Management, 2020, 103, 146-158.	3.7	39
10	Heterogeneous Catalysis in (Bio)Ethanol Conversion to Chemicals and Fuels: Thermodynamics, Catalysis, Reaction Paths, Mechanisms and Product Selectivities. Energies, 2020, 13, 3587.	1.6	20
11	The 500°C Isothermal Section of the Al-Co-Nd Ternary System. Journal of Phase Equilibria and Diffusion, 2020, 41, 347-364.	0.5	9
12	A study of ethanol dehydrogenation to acetaldehyde over supported copper catalysts: Catalytic activity, deactivation and regeneration. Applied Catalysis A: General, 2020, 602, 117710.	2.2	28
13	Unsupported cobalt nanoparticles as catalysts: Effect of preparation method on catalytic activity in CO2 methanation and ethanol steam reforming. International Journal of Hydrogen Energy, 2019, 44, 27319-27328.	3.8	25
14	Thiol-functionalized magnetic nanoparticles for static and dynamic removal of Pb(II) ions from waters. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	6
15	On the Role of Support in Metallic Heterogeneous Catalysis: A Study of Unsupported Nickel–Cobalt Alloy Nanoparticles in Ethanol Steam Reforming. Catalysis Letters, 2019, 149, 929-941.	1.4	17
16	A study of Ni/La-Al2O3 catalysts: A competitive system for CO2 methanation. Applied Catalysis B: Environmental, 2019, 248, 286-297.	10.8	142
17	Cobalt nanoparticles mechanically deposited on αâ€Al ₂ O ₃ : a competitive catalyst for the production of hydrogen through ethanol steam reforming. Journal of Chemical Technology and Biotechnology, 2019, 94, 538-546.	1.6	20
18	A study of ethanol conversion over zinc aluminate catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 503-522.	0.8	12

#	Article	IF	CITATIONS
19	Enzymatically promoted release of organic molecules linked to magnetic nanoparticles. Beilstein Journal of Nanotechnology, 2018, 9, 986-999.	1.5	2
20	Ethanol and diethyl ether catalytic conversion over commercial alumina and lanthanum-doped alumina: Reaction paths, catalyst structure and coking. Applied Catalysis B: Environmental, 2018, 236, 490-500.	10.8	42
21	Adsorption and separation of CO 2 from N 2 -rich gas on zeolites: Na-X faujasite vs Na-mordenite. Journal of CO2 Utilization, 2017, 19, 266-275.	3.3	28
22	Acido-basicity of lanthana/alumina catalysts and their activity in ethanol conversion. Applied Catalysis B: Environmental, 2017, 200, 458-468.	10.8	45
23	Functionalization of Fe3O4 NPs by Silanization: Use of Amine (APTES) and Thiol (MPTMS) Silanes and Their Physical Characterization. Materials, 2016, 9, 826.	1.3	90
24	On the detectability limits of nickel species on NiO/γ-Al 2 O 3 catalytic materials. Applied Catalysis A: General, 2016, 525, 180-189.	2.2	35
25	Hydrogen from steam reforming of ethanol over cobalt nanoparticles: Effect of boron impurities. Applied Catalysis A: General, 2016, 518, 67-77.	2.2	21
26	A study of Ni/Al2O3 and Ni–La/Al2O3 catalysts for the steam reforming of ethanol and phenol. Applied Catalysis B: Environmental, 2015, 174-175, 21-34.	10.8	104
27	Preparation of supported catalysts: A study of the effect of small amounts of silica on Ni/Al2O3 catalysts. Applied Catalysis A: General, 2015, 505, 86-97.	2.2	34
28	Methanation of carbon dioxide on Ru/Al 2 O 3 andÂNi/Al 2 O 3 catalysts at atmospheric pressure: Catalysts activation, behaviour and stability. International Journal of Hydrogen Energy, 2015, 40, 9171-9182.	3.8	179
29	Tuning of product selectivity in the conversion of ethanol to hydrocarbons over H-ZSM-5 based zeolite catalysts. Fuel Processing Technology, 2015, 137, 290-297.	3.7	47
30	Steam reforming of ethanol–phenol mixture on Ni/Al2O3: Effect of magnesium and boron on catalytic activity in the presence and absence of sulphur. Applied Catalysis B: Environmental, 2014, 147, 813-826.	10.8	46
31	Critical assessment and experimental investigation of Co–Ni–Ti phase equilibria. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2014, 44, 26-38.	0.7	17
32	Unsupported versus alumina-supported Ni nanoparticles as catalysts for steam/ethanol conversion and CO2 methanation. Journal of Molecular Catalysis A, 2014, 383-384, 10-16.	4.8	52
33	The state of nickel in spent Fluid Catalytic Cracking catalysts. Applied Catalysis A: General, 2014, 486, 176-186.	2.2	53
34	A study of the methanation of carbon dioxide on Ni/Al2O3 catalysts at atmospheric pressure. International Journal of Hydrogen Energy, 2014, 39, 11557-11565.	3.8	225
35	New Approach for the Step by Step Control of Magnetic Nanostructure Functionalization. Inorganic Chemistry, 2014, 53, 9166-9173.	1.9	7
36	On the consistency of results arising from different techniques concerning the nature of supported metal oxide (nano)particles. The case of NiO/Al2O3. Catalysis Communications, 2014, 51, 37-41.	1.6	28

#	Article	IF	CITATIONS
37	Continuous synthesis of nickel nanopowders: Characterization, process optimization, and catalytic properties. Applied Catalysis B: Environmental, 2014, 156-157, 404-415.	10.8	23
38	Spectroscopic characterization of Ni/Al2O3 catalytic materials for the steam reforming of renewables. Applied Catalysis A: General, 2013, 452, 163-173.	2.2	57
39	Steam reforming of ethanol–phenol mixture on Ni/Al2O3: Effect of Ni loading and sulphur deactivation. Applied Catalysis B: Environmental, 2013, 129, 460-472.	10.8	52
40	Quantitative analysis of the a.c. susceptibility of core–shell nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	3
41	Cobalt-based nanoparticles as catalysts for low temperature hydrogen production by ethanol steam reforming. International Journal of Hydrogen Energy, 2013, 38, 82-91.	3.8	64
42	Equilibrium between MB2 (M=Ti,Zr,Hf) UHTC and Ni: A thermodynamic database for the B–Hf–Ni–Ti–Zr system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 35, 601-619.	0.7	46
43	Experimental investigation of the Cu–Si phase diagram at x(Cu)>0.72. Intermetallics, 2011, 19, 1479-1488.	1.8	41
44	Synthesis, characterization and a.c. magnetic analysis of magnetite nanoparticles. Journal of Nanoparticle Research, 2011, 13, 7013-7020.	0.8	14
45	USING NEUTRON DIFFRACTION AND MÖSSBAUER SPECTROSCOPY TO STUDY MAGNETIC ORDERING IN THE R3T4Sn4 FAMILY OF COMPOUNDS. Modern Physics Letters B, 2010, 24, 1-28.	1.0	21
46	Bulk and surface properties of commercial kaolins. Applied Clay Science, 2010, 48, 446-454.	2.6	92
47	Neutron powder diffraction determination of the magnetic structure of Gd3Ag4Sn4. Journal of Physics Condensed Matter, 2009, 21, 124201.	0.7	9
48	An FTIR study of the dispersed Ni species on Ni-YSZ catalysts. Applied Catalysis A: General, 2009, 353, 137-143.	2.2	32
49	Hydrogen production by ethanol steam reforming over Ni catalysts derived from hydrotalcite-like precursors: Catalyst characterization, catalytic activity and reaction path. Applied Catalysis A: General, 2009, 355, 83-93.	2.2	127
50	The isothermal section at 600Ââ~C of the ternary Pr–Au–Sn phase diagram. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33, 31-43.	0.7	12
51	About the Al–Cu–Si isothermal section at 500°C and the stability of the É≻-Cu15Si4 phase. Intermetallics, 2009, 17, 154-164.	1.8	21
52	Phase equilibria in the In–Sn-rich part of the Cu–In–Sn ternary system. Journal of Alloys and Compounds, 2009, 487, 90-97.	2.8	3
53	Electrochemical and mechanical behaviour of Snâ€2.5Agâ€0.5Cu and Snâ€48Biâ€2Zn solders. Materials and Corrosion - Werkstoffe Und Korrosion, 2008, 59, 662-669.	0.8	34
54	Critical assessment of iron binary systems with light rare earths La, Ce, Pr, and Nd. Inorganica Chimica Acta, 2008, 361, 3800-3806.	1.2	28

#	Article	IF	CITATIONS
55	Yttria-stabilized zirconia (YSZ) supported Ni–Co alloys (precursor of SOFC anodes) as catalysts for the steam reforming of ethanol. International Journal of Hydrogen Energy, 2008, 33, 3728-3735.	3.8	98
56	Magnetic ordering in Gd3Cu4Sn4and Gd3Ag4Sn4studied using119Sn Mössbauer spectroscopy. Journal of Physics Condensed Matter, 2007, 19, 156209.	0.7	8
57	Neutron diffraction and ¹¹⁹ Sn Mössbauer study of Sm ₃ Ag ₄ Sn ₄ . Journal of Physics Condensed Matter, 2007, 19, 436205.	0.7	7
58	Characterization of Pdâ^'Cu Alloy Nanoparticles on γ-Al2O3-Supported Catalysts. Langmuir, 2006, 22, 9214-9219.	1.6	36
59	Crystal structure of ytterbium copper stannides in the range 14–32 at.% tin. Intermetallics, 2006, 14, 272-279.	1.8	11
60	Phase equilibria and phase transformations in the Ti-rich corner of the Fe–Ni–Ti system. Intermetallics, 2006, 14, 1226-1230.	1.8	21
61	Production of hydrogen by steam reforming of C3 organics over Pd–Cu/γγ-Al2O3 catalyst. International Journal of Hydrogen Energy, 2006, 31, 13-19.	3.8	41
62	Complex antiferromagnetic order in Dy3Ag4Sn4. Journal of Physics Condensed Matter, 2006, 18, 5783-5792.	0.7	7
63	Complex magnetic ordering in Tb3Ag4Sn4. Journal of Applied Physics, 2006, 99, 08J502.	1.1	8
64	The Magnetism of Sm3Ag4Sn4 and Gd3Ag4Sn4 ChemInform, 2005, 36, no.	0.1	0
65	The magnetism of Sm3Ag4Sn4 and Gd3Ag4Sn4. Journal of Alloys and Compounds, 2005, 387, 15-19.	2.8	20
66	The isothermal section at 500°C of the Al–Cu–Ho ternary system. Intermetallics, 2005, 13, 669-680.	1.8	6
67	Ternary rare-earth aluminum systems with copper: A review and a contribution to their assessment. Journal of Phase Equilibria and Diffusion, 2004, 25, 22-52.	0.5	64
68	Yb3Cu6Sn5, Yb5Cu11Sn8 and Yb3Cu8Sn4: crystal structure of three ordered compounds. Journal of Solid State Chemistry, 2004, 177, 1919-1924.	1.4	21
69	The isothermal section at 500°C of the Al–La–Y ternary system. Intermetallics, 2004, 12, 363-371.	1.8	4
70	Ternary Rare-Earth Aluminum Systems With Copper: A Review and a Contribution to Their Assessment. Journal of Phase Equilibria and Diffusion, 2004, 25, 22-52.	0.5	0
71	Magnetic properties of the new rare earth intermetallic compound Pr5AgSn3. Intermetallics, 2002, 10, 323-327.	1.8	4
72	The isothermal section at 400°C of the Pr–Ag–Sn ternary system. Intermetallics, 2002, 10, 801-809.	1.8	17

#	Article	IF	CITATIONS
73	Ternary rare earth germanium systems with Cu and Ag—A review and a contribution to their assessment. Journal of Phase Equilibria and Diffusion, 2002, 23, 7-28.	0.3	5
74	The isothermal section at 400°C of the Yb–Ag–Sn ternary system. Journal of Alloys and Compounds, 2001, 317-318, 513-520.	2.8	10
75	Crystal structure of ytterbium copper stannide, Yb4Cu2Sn5. Zeitschrift Fur Kristallographie - New Crystal Structures, 2001, 216, 21-22.	0.1	1
76	Contribution to the investigation of ternary Pr–Cu–Sn alloys. Intermetallics, 2000, 8, 259-266.	1.8	12
77	Thermodynamic measurements and assessment of the Al–Sc system. Intermetallics, 1999, 7, 101-108.	1.8	101
78	The isothermal section at 400°C of the Nd–Cu–Sn ternary system. Intermetallics, 1999, 7, 835-846.	1.8	24
79	The system Ce–Ag–Sn: phase equilibria and magnetic properties. Intermetallics, 1999, 7, 931-935.	1.8	31
80	Yb–Cu–Sn system: the isothermal section at 400°C. Intermetallics, 1999, 7, 957-966.	1.8	19
81	On the Ce-Cu-Sn system. Journal of Phase Equilibria and Diffusion, 1998, 19, 239-251.	0.3	24
82	The isothermal section at 400 \hat{A}^{o} C of the Ce-Cu-Sn ternary system. Intermetallics, 1997, 5, 507-514.	1.8	16
83	Nd-Cu-Sn system: identification of ternary phases and partial determination of the isothermal section at 400°C. Journal of Alloys and Compounds, 1997, 247, 148-153.	2.8	5
84	Ce-Cu-Sn system: experimental determination of the liquidus surface in the Ce-rich corner. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1997, 94, 1081-1086.	0.2	2
85	The isothermal section at 400 °C of the phase diagram Ceî—,Cuî—,Sn in the region between CeCu2î—,Ce3Sn7î— Intermetallics, 1996, 4, 131-138.	,Ce. 1.8	9
86	A contribution to the crystallochemistry of ternary 1:1:1 and 1:1:2 rare earth intermetallic phases with Pb and Pd. Journal of Alloys and Compounds, 1995, 220, 241-243.	2.8	10
87	On some ternary alloys R'î—,Râ€î—,Al with rare earths. Journal of Alloys and Compounds, 1994, 215, 181-186.	2.8	10
88	Preparation and characterization of ternary Ndî—,Prî—,Sb alloys. Journal of Alloys and Compounds, 1993, 202, L11-L14.	2.8	5
89	A study of molybdena catalysts in ethanol oxidation. Part 1. Unsupported and silicaâ€supported MoO 3. Journal of Chemical Technology and Biotechnology, 0, , .	1.6	2