Yichun Liu

List of Publications by Citations

Source: https://exaly.com/author-pdf/6524706/yichun-liu-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

558	28,393	79	147
papers	citations	h-index	g-index
568 ext. papers	31,200 ext. citations	5.7 avg, IF	7.21 L-index

#	Paper	IF	Citations
558	Photovoltaics. Interface engineering of highly efficient perovskite solar cells. <i>Science</i> , 2014 , 345, 542-6	33.3	5272
557	Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. <i>ACS Applied Materials & amp; Interfaces</i> , 2010 , 2, 2915-23	9.5	504
556	In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. <i>Nanoscale</i> , 2011 , 3, 3357-63	7.7	501
555	Synaptic Learning and Memory Functions Achieved Using Oxygen Ion Migration/Diffusion in an Amorphous InGaZnO Memristor. <i>Advanced Functional Materials</i> , 2012 , 22, 2759-2765	15.6	477
554	High photocatalytic activity of ZnO-carbon nanofiber heteroarchitectures. <i>ACS Applied Materials & Amp; Interfaces</i> , 2011 , 3, 590-6	9.5	359
553	Electrospun Nanofibers of ZnOBnO2 Heterojunction with High Photocatalytic Activity. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 7920-7925	3.8	318
552	Hierarchical assembly of ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers: enhanced photocatalytic activity based on photoinduced interfacial charge transfer. <i>Nanoscale</i> , 2013 , 5, 606-18	7.7	312
551	Structural and Optical Properties of Uniform ZnO Nanosheets. <i>Advanced Materials</i> , 2005 , 17, 586-590	24	296
550	SnO2 nanostructures-TiO2 nanofibers heterostructures: controlled fabrication and high photocatalytic properties. <i>Inorganic Chemistry</i> , 2009 , 48, 7261-8	5.1	278
549	Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: Synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials. <i>Nanoscale</i> , 2011 , 3, 5034	7.7	276
548	Enhancement of the visible-light photocatalytic activity of In2O3-TiO2 nanofiber heteroarchitectures. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 424-30	9.5	268
547	In situ assembly of well-dispersed gold nanoparticles on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol. <i>Chemical Communications</i> , 2011 , 47, 3906-8	5.8	264
546	A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. <i>Langmuir</i> , 2011 , 27, 2946-52	4	247
545	A single Eu-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes. <i>Light: Science and Applications</i> , 2016 , 5, e16024	16.7	244
544	Low Threshold Voltage Transistors Based on Individual Single-Crystalline Submicrometer-Sized Ribbons of Copper Phthalocyanine. <i>Advanced Materials</i> , 2006 , 18, 65-68	24	236
543	An Ultra Closely Estacked Organic Semiconductor for High Performance Field-Effect Transistors. <i>Advanced Materials</i> , 2007 , 19, 2613-2617	24	235
542	Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning. <i>Scripta Materialia</i> , 2008 , 59, 332-335	5.6	226

(2011-2012)

541	assembled on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1387-1395		225	
540	Photoswitches and Phototransistors from Organic Single-Crystalline Sub-micro/nanometer Ribbons. <i>Advanced Materials</i> , 2007 , 19, 2624-2628	24	216	
539	One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity. <i>CrystEngComm</i> , 2012 , 14, 605-612	3.3	213	
538	Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 20263-7	3.4	190	
537	Hierarchical heterostructures of Bi2MoO6 on carbon nanofibers: controllable solvothermal fabrication and enhanced visible photocatalytic properties. <i>Journal of Materials Chemistry</i> , 2012 , 22, 57	7-584	185	
536	Facile in situ synthesis of plasmonic nanoparticles-decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution. <i>Nanoscale</i> , 2016 , 8, 11034-43	7.7	184	
535	White-light emission of polyvinyl alcohol\(\mathbb{I}\)nO hybrid nanofibers prepared by electrospinning. <i>Applied Physics Letters</i> , 2005 , 87, 113115	3.4	178	
534	ZnO Hollow Nanofibers: Fabrication from Facile Single Capillary Electrospinning and Applications in Gas Sensors. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 19397-19403	3.8	176	
533	Optical properties of ZnO and ZnO:In nanorods assembled by sol-gel method. <i>Journal of Chemical Physics</i> , 2005 , 123, 134701	3.9	174	
532	Hierarchical nanostructures of copper(II) phthalocyanine on electrospun TiO(2) nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 3, 369-77	9.5	173	
531	TiO(2)@carbon core/shell nanofibers: controllable preparation and enhanced visible photocatalytic properties. <i>Nanoscale</i> , 2011 , 3, 2943-9	7.7	172	
530	Flexible solid-state supercapacitors based on freestanding nitrogen-doped porous carbon nanofibers derived from electrospun polyacrylonitrile@polyaniline nanofibers. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4180-4187	13	170	
529	Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers. Journal of Colloid and Interface Science, 2009 , 333, 242-8	9.3	168	
528	Superhydrophobic and ultraviolet-blocking cotton textiles. <i>ACS Applied Materials & Description</i> (1997) 11, 3, 1277-81	9.5	163	
527	Gas dielectric transistor of CuPc single crystalline nanowire for SOIdetection down to sub-ppm levels at room temperature. <i>Advanced Materials</i> , 2013 , 25, 2269-73, 2376	24	144	
526	F-doping effects on electrical and optical properties of ZnO nanocrystalline films. <i>Applied Physics Letters</i> , 2005 , 86, 123107	3.4	144	
525	A highly efficient white light (Sr3,Ca,Ba)(PO4)3Cl:Eu2+, Tb3+, Mn2+ phosphor via dual energy transfers for white light-emitting diodes. <i>Inorganic Chemistry</i> , 2014 , 53, 3441-8	5.1	129	
524	Core/shell nanofibers of TiO2@carbon embedded by Ag nanoparticles with enhanced visible photocatalytic activity. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17746		129	

523	p-MoO3 nanostructures/n-TiO2 nanofiber heterojunctions: controlled fabrication and enhanced photocatalytic properties. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 9004-12	9.5	125
522	Bi2MoO6 microtubes: Controlled fabrication by using electrospun polyacrylonitrile microfibers as template and their enhanced visible light photocatalytic activity. <i>Journal of Hazardous Materials</i> , 2012 , 225-226, 155-63	12.8	123
521	A novel method for making ZrO2 nanofibres via an electrospinning technique. <i>Journal of Crystal Growth</i> , 2004 , 267, 380-384	1.6	123
520	Structure and photoluminescence of Mn-passivated nanocrystalline ZnO thin films. <i>Journal of Crystal Growth</i> , 2003 , 254, 80-85	1.6	116
519	Growth and optical properties of faceted hexagonal ZnO nanotubes. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 14714-8	3.4	113
518	Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction. <i>Applied Physics Letters</i> , 2008 , 93, 163501	3.4	112
517	In Situ Patterning of Organic Single-Crystalline Nanoribbons on a SiO2 Surface for the Fabrication of Various Architectures and High-Quality Transistors. <i>Advanced Materials</i> , 2006 , 18, 3010-3014	24	111
516	Room-temperature ferromagnetism in (Mn, N)-codoped ZnO thin films prepared by reactive magnetron cosputtering. <i>Applied Physics Letters</i> , 2006 , 88, 242502	3.4	110
515	Bi4Ti3O12 nanosheets/TiO2 submicron fibers heterostructures: in situ fabrication and high visible light photocatalytic activity. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6922		108
514	Enhanced Raman Scattering of ZnO Quantum Dots on Silver Colloids. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 3290-3293	3.8	106
513	Defect-Induced Yellow Color in Nb-Doped TiO2 and Its Impact on Visible-Light Photocatalysis. Journal of Physical Chemistry C, 2015 , 119, 16623-16632	3.8	105
512	Flexible Resistive Switching Memory Device Based on Amorphous InGaZnO Film With Excellent Mechanical Endurance. <i>IEEE Electron Device Letters</i> , 2011 , 32, 1442-1444	4.4	105
511	Polyacrylonitrile and Carbon Nanofibers with Controllable Nanoporous Structures by Electrospinning. <i>Macromolecular Materials and Engineering</i> , 2009 , 294, 673-678	3.9	104
510	Preparation of Mn2O3 and Mn3O4 nanofibers via an electrospinning technique. <i>Journal of Solid State Chemistry</i> , 2004 , 177, 2628-2631	3.3	104
509	Electrospun nanofibers of V-doped TiO2 with high photocatalytic activity. <i>Journal of Colloid and Interface Science</i> , 2010 , 351, 57-62	9.3	103
508	Promotion of multi-electron transfer for enhanced photocatalysis: A review focused on oxygen reduction reaction. <i>Applied Surface Science</i> , 2015 , 358, 28-45	6.7	100
507	Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO(2) conductive thin film. <i>Chemical Communications</i> , 2010 , 46, 3499-501	5.8	100
506	In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: a three-way synergistic heterostructure with enhanced photocatalytic activity. <i>Journal of Hazardous Materials</i> , 2012 , 237-238, 331-8	12.8	99

(2011-2018)

505	Heterojunction of g-C3N4/BiOI Immobilized on Flexible Electrospun Polyacrylonitrile Nanofibers: Facile Preparation and Enhanced Visible Photocatalytic Activity for Floating Photocatalysis. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 2316-2323	8.3	98
504	Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors. <i>Energy</i> , 2016 , 95, 233-2	4 19	97
503	Heterostructured TiO2/WO3 porous microspheres: Preparation, characterization and photocatalytic properties. <i>Catalysis Today</i> , 2013 , 201, 195-202	5.3	97
502	Hydrothermal Growth of Layered Titanate Nanosheet Arrays on Titanium Foil and Their Topotactic Transformation to Heterostructured TiO2 Photocatalysts. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 22276-22285	3.8	95
501	Biocompatible ZnO/Au nanocomposites for ultrasensitive DNA detection using resonance Raman scattering. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 6484-9	3.4	95
500	Hydrothermal synthesis of carbon-rich graphitic carbon nitride nanosheets for photoredox catalysis. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 3281-3284	13	92
499	One-dimensional hierarchical heterostructures of InBIhanosheets on electrospun TiOIhanofibers with enhanced visible photocatalytic activity. <i>Journal of Hazardous Materials</i> , 2013 , 260, 892-900	12.8	92
498	Performance improvement of resistive switching memory achieved by enhancing local-electric-field near electromigrated Ag-nanoclusters. <i>Nanoscale</i> , 2013 , 5, 4490-4	7.7	91
497	Three dimensional hierarchical heterostructures of g-CN nanosheets/TiO nanofibers: Controllable growth via gas-solid reaction and enhanced photocatalytic activity under visible light. <i>Journal of Hazardous Materials</i> , 2018 , 344, 113-122	12.8	90
496	Optical properties and electrical characterization of p-type ZnO thin films prepared by thermally oxiding Zn3N2 thin films. <i>Journal of Materials Research</i> , 2003 , 18, 8-13	2.5	89
495	Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. <i>Nanotoxicology</i> , 2012 , 6, 241-8	5.3	88
494	Water-dichloromethane interface controlled synthesis of hierarchical rutile TiO2 superstructures and their photocatalytic properties. <i>Inorganic Chemistry</i> , 2009 , 48, 1105-13	5.1	87
493	Structure and optically pumped lasing from nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films. <i>Journal of Applied Physics</i> , 2002 , 92, 3293-3298	2.5	87
492	Photoluminescence of polyethylene oxideInO composite electrospun fibers. <i>Polymer</i> , 2007 , 48, 1459-14	163	86
491	The structural and optical properties of Cu2O films electrodeposited on different substrates. Semiconductor Science and Technology, 2005 , 20, 44-49	1.8	86
490	Ultrafast Li-ion battery anode with superlong life and excellent cycling stability from strongly coupled ZnO nanoparticle/conductive nanocarbon skeleton hybrid materials. <i>Nano Energy</i> , 2013 , 2, 579-	. 5 85	85
489	High quality ZnO thin films grown by plasma enhanced chemical vapor deposition. <i>Journal of Applied Physics</i> , 2002 , 91, 501	2.5	85
488	Electrospun nanofibers of TiO2/CdS heteroarchitectures with enhanced photocatalytic activity by visible light. <i>Journal of Colloid and Interface Science</i> , 2011 , 359, 220-7	9.3	83

487	A simple method for controllable preparation of polymer nanotubes via a single capillary electrospinning. <i>Langmuir</i> , 2007 , 23, 10920-3	4	83
486	Color tuning of (K1N,Nax)SrPO4:0.005Eu2+, yTb3+ blue-emitting phosphors via crystal field modulation and energy transfer. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 4570	7.1	82
485	Fabrication of NiCo2O4 nanofibers by electrospinning. <i>Solid State Communications</i> , 2004 , 131, 107-109	1.6	82
484	TiO2-x/CoOx photocatalyst sparkles in photothermocatalytic reduction of CO2 with H2O steam. <i>Applied Catalysis B: Environmental</i> , 2019 , 243, 760-770	21.8	82
483	Tin oxide (SnO2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: controlled fabrication and high capacitive behavior. <i>Journal of Colloid and Interface Science</i> , 2011 , 356, 706-12	9.3	80
482	Structural, optical, and magnetic properties of Mn-doped ZnO thin film. <i>Journal of Chemical Physics</i> , 2006 , 124, 74707	3.9	80
481	Structural and photoluminescent properties of ZnO hexagonal nanoprisms synthesized by microemulsion with polyvinyl pyrrolidone served as surfactant and passivant. <i>Chemical Physics Letters</i> , 2006 , 424, 340-344	2.5	79
480	Temperature dependence of excitonic luminescence from nanocrystalline ZnO films. <i>Journal of Luminescence</i> , 2002 , 99, 149-154	3.8	79
479	Bi2MoO6 ultrathin nanosheets on ZnTiO3 nanofibers: a 3D open hierarchical heterostructures synergistic system with enhanced visible-light-driven photocatalytic activity. <i>Journal of Hazardous Materials</i> , 2012 , 217-218, 422-8	12.8	78
478	The electrical properties and the interfaces of Cu2O/ZnO/ITO plb heterojunction. <i>Physica B: Condensed Matter</i> , 2004 , 351, 178-183	2.8	78
477	Nanofibers of CeO2 via an electrospinning technique. <i>Thin Solid Films</i> , 2005 , 478, 228-231	2.2	78
476	Nonvolatile/volatile behaviors and quantized conductance observed in resistive switching memory based on amorphous carbon. <i>Carbon</i> , 2015 , 91, 38-44	10.4	77
475	Biodegradable Natural Pectin-Based Flexible Multilevel Resistive Switching Memory for Transient Electronics. <i>Small</i> , 2019 , 15, e1803970	11	77
474	High-quality ZnO thin films prepared by two-step thermal oxidation of the metallic Zn. <i>Journal of Crystal Growth</i> , 2002 , 240, 467-472	1.6	76
473	Electrospun Carbon Nanofibers/Carbon Nanotubes/Polyaniline Ternary Composites with Enhanced Electrochemical Performance for Flexible Solid-State Supercapacitors. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 1689-1696	8.3	75
472	Carbon-modified BiVO4 microtubes embedded with Ag nanoparticles have high photocatalytic activity under visible light. <i>Nanoscale</i> , 2012 , 4, 7501-8	7.7	75
471	Photoelectrochemical Water Splitting with Rutile TiO2 Nanowires Array: Synergistic Effect of Hydrogen Treatment and Surface Modification with Anatase Nanoparticles. <i>Electrochimica Acta</i> , 2014 , 130, 290-295	6.7	74
470	Size-Controlled Synthesis and Optical Properties of Small-Sized ZnO Nanorods. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 7497-7502	3.8	74

469	Photoluminescence and Raman behaviors of ZnO nanostructures with different morphologies. Journal of Crystal Growth, 2006 , 289, 55-58	1.6	74
468	Structural and optical properties of ZnO nanotower bundles. <i>Applied Physics Letters</i> , 2006 , 88, 123111	3.4	71
467	Ultraviolet electroluminescence from p-GaN/i-ZnO/n-ZnO heterojunction light-emitting diodes. <i>Applied Physics B: Lasers and Optics</i> , 2005 , 80, 871-874	1.9	71
466	Three-dimensional freestanding hierarchically porous carbon materials as binder-free electrodes for supercapacitors: high capacitive property and long-term cycling stability. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5623-5631	13	70
465	Local chemical states and thermal stabilities of nitrogen dopants in ZnO film studied by temperature-dependent x-ray photoelectron spectroscopy. <i>Applied Physics Letters</i> , 2009 , 95, 191903	3.4	70
464	Highly efficient decomposition of organic dye by aqueous-solid phase transfer and in situ photocatalysis using hierarchical copper phthalocyanine hollow spheres. <i>ACS Applied Materials & Amp; Interfaces</i> , 2011 , 3, 2573-8	9.5	69
463	CuO/Cu2O nanofibers as electrode materials for non-enzymatic glucose sensors with improved sensitivity. <i>RSC Advances</i> , 2014 , 4, 31056	3.7	68
462	Synthesis of Fe3O4/CNTs magnetic nanocomposites at the liquid liquid interface using oleate as surfactant and reactant. <i>Journal of Magnetism and Magnetic Materials</i> , 2009 , 321, 408-412	2.8	68
461	Synthesis and luminescence properties of Eu3+-doped ZnO nanocrystals by a hydrothermal process. <i>Materials Chemistry and Physics</i> , 2007 , 106, 305-309	4.4	68
460	Electrospun nanofibers of NiO/ZnO composite. <i>Inorganic Chemistry Communication</i> , 2004 , 7, 625-627	3.1	68
459	In2O3 nanocubes/carbon nanofibers heterostructures with high visible light photocatalytic activity. Journal of Materials Chemistry, 2012 , 22, 1786-1793		66
458	The Optical Properties of ZnO Nanoparticles Capped with Polyvinyl Butyral. <i>Journal of Sol-Gel Science and Technology</i> , 2004 , 30, 157-161	2.3	66
457	Simple ethanol impregnation treatment can enhance photocatalytic activity of TiO2 nanoparticles under visible-light irradiation. <i>ACS Applied Materials & District Materials & Di</i>	9.5	65
456	Hierarchical heterostructures of p-type BiOCl nanosheets on electrospun n-type TiO2 nanofibers with enhanced photocatalytic activity. <i>Catalysis Communications</i> , 2015 , 67, 6-10	3.2	65
455	Reduced Graphene Oxide Conformally Wrapped Silver Nanowire Networks for Flexible Transparent Heating and Electromagnetic Interference Shielding. <i>ACS Nano</i> , 2020 , 14, 8754-8765	16.7	65
454	An electron-rich free-standing carbon@Au core-shell nanofiber network as a highly active and recyclable catalyst for the reduction of 4-nitrophenol. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 10-	43 ³ -8	65
453	Toward a generalized Bienenstock-Cooper-Munro rule for spatiotemporal learning via triplet-STDP in memristive devices. <i>Nature Communications</i> , 2020 , 11, 1510	17.4	64
452	Solar photocatalytic activities of porous Nb-doped TiO2 microspheres prepared by ultrasonic spray pyrolysis. <i>Solid State Sciences</i> , 2012 , 14, 139-144	3.4	64

451	BiMoO/BiFeO heterojunction nanofibers: Enhanced photocatalytic activity, charge separation mechanism and magnetic separability. <i>Journal of Colloid and Interface Science</i> , 2018 , 529, 404-414	9.3	62	
450	BiOCl nanosheets immobilized on electrospun polyacrylonitrile nanofibers with high photocatalytic activity and reusable property. <i>Applied Surface Science</i> , 2013 , 285, 509-516	6.7	61	
449	Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires. <i>Applied Physics Letters</i> , 2011 , 99, 063115	3.4	61	
448	Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films. <i>Journal Physics D: Applied Physics</i> , 2001 , 34, 3430-	3433	61	
447	Electrospun nanofibers of p-type BiFeO3/n-type TiO2 hetero-junctions with enhanced visible-light photocatalytic activity. <i>RSC Advances</i> , 2014 , 4, 31941	3.7	60	
446	The optical properties of ZnO films grown on porous Si templates. <i>Journal Physics D: Applied Physics</i> , 2003 , 36, 2705-2708	3	60	
445	Growth of single-crystalline rutile TiO2 nanowire array on titanate nanosheet film for dye-sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 6389		59	
444	Fabrication, structure, and enhanced photocatalytic properties of hierarchical CeO2 nanostructures/TiO2 nanofibers heterostructures. <i>Materials Research Bulletin</i> , 2010 , 45, 1406-1412	5.1	59	
443	Electrical and structural properties of p-type ZnO:N thin films prepared by plasma enhanced chemical vapour deposition. <i>Semiconductor Science and Technology</i> , 2005 , 20, 796-800	1.8	59	
442	Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering. <i>Journal of Applied Physics</i> , 2005 , 97, 103509	2.5	59	
441	Iron phthalocyanine/TiO2 nanofiber heterostructures with enhanced visible photocatalytic activity assisted with H2O2. <i>Journal of Hazardous Materials</i> , 2012 , 219-220, 156-63	12.8	57	
440	The photoluminescence properties of ZnO:N films fabricated by thermally oxidizing Zn3N2films using plasma-assisted metal-organic chemical vapour deposition. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, 4635-4642	1.8	56	
439	3D MoS 2 nanosheet/TiO 2 nanofiber heterostructures with enhanced photocatalytic activity under UV irradiation. <i>Journal of Alloys and Compounds</i> , 2016 , 686, 137-144	5.7	55	
438	Effects of thermal annealing on ZnO films grown by plasma enhanced chemical vapour deposition from Zn(C2H5)2and CO2gas mixtures. <i>Journal Physics D: Applied Physics</i> , 2003 , 36, 719-722	3	55	
437	Enhanced photoelectrochemical performance of nanoporous BiVO 4 photoanode by combining surface deposited cobalt-phosphate with hydrogenation treatment. <i>Electrochimica Acta</i> , 2016 , 195, 51-	5 ^{6.7}	55	
436	Highly stable copper wire/alumina/polyimide composite films for stretchable and transparent heaters. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 3581-3591	7.1	54	
435	Multi-heterojunction photocatalysts based on WO3 nanorods: Structural design and optimization for enhanced photocatalytic activity under visible light. <i>Chemical Engineering Journal</i> , 2014 , 237, 29-37	14.7	54	
434	Surface oxygen vacancies on WO 3 contributed to enhanced photothermo-synergistic effect. <i>Applied Surface Science</i> , 2017 , 391, 654-661	6.7	54	

433	Single-phased white-emitting 12CaOl Al2O3:Ce3+, Dy3+ phosphors with suitable electrical conductivity for field emission displays. <i>Journal of Materials Chemistry</i> , 2012 , 22, 16839		54
432	In situ generation of well-dispersed ZnO quantum dots on electrospun silica nanotubes with high photocatalytic activity. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2012 , 4, 785-90	9.5	54
431	Photocatalytic and photoelectrochemical studies on N-doped TiO2 photocatalyst. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2009 , 202, 39-47	4.7	54
430	Nitrogen-related recombination mechanisms in p-type ZnO films grown by plasma-assisted molecular beam epitaxy. <i>Journal of Applied Physics</i> , 2007 , 102, 043522	2.5	54
429	Effects of RF power on properties of ZnO thin films grown on Si (001) substrate by plasma enhanced chemical vapor deposition. <i>Journal of Crystal Growth</i> , 2003 , 249, 179-185	1.6	54
428	Composition-controllable p-CuO/n-ZnO hollow nanofibers for high-performance H2S detection. <i>Sensors and Actuators B: Chemical</i> , 2019 , 285, 495-503	8.5	53
427	CuO nanoparticles/nitrogen-doped carbon nanofibers modified glassy carbon electrodes for non-enzymatic glucose sensors with improved sensitivity. <i>Ceramics International</i> , 2016 , 42, 11285-11293	3 ^{5.1}	53
426	High-Performance, Ultrathin, Ultraflexible Organic Thin-Film Transistor Array Via Solution Process. <i>Small</i> , 2018 , 14, e1801020	11	52
425	Heterostructured ZnO/Au nanoparticles-based resonant Raman scattering for protein detection. Journal of Physical Chemistry B, 2009 , 113, 1468-72	3.4	52
424	The synthesis and optical properties of the heterostructured ZnO/Au nanocomposites. <i>Journal of Colloid and Interface Science</i> , 2008 , 326, 392-5	9.3	52
423	Interface State-Induced Negative Differential Resistance Observed in Hybrid Perovskite Resistive Switching Memory. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 21755-21763	9.5	51
422	Memristors with organic-inorganic halide perovskites. <i>Informa</i> @@Materilly, 2019 , 1, 183	23.1	50
421	Bioinspired preparation of ultrathin SiO(2) shell on ZnO nanowire array for ultraviolet-durable superhydrophobicity. <i>Langmuir</i> , 2009 , 25, 13619-24	4	50
420	Room-temperature blue luminescence from ZnO:Er thin films. <i>Thin Solid Films</i> , 2002 , 413, 257-261	2.2	50
419	Preparation of ZnO colloids by aggregation of the nanocrystal subunits. <i>Journal of Colloid and Interface Science</i> , 2005 , 283, 380-4	9.3	50
418	TiO/SrTiO/g-CN ternary heterojunction nanofibers: gradient energy band, cascade charge transfer, enhanced photocatalytic hydrogen evolution, and nitrogen fixation. <i>Nanoscale</i> , 2020 , 12, 8320-8329	7.7	49
417	Stretchable and conformable synapse memristors for wearable and implantable electronics. <i>Nanoscale</i> , 2018 , 10, 18135-18144	7.7	49
416	Effects of pectin structure and crosslinking method on the properties of crosslinked pectin nanofibers. <i>Carbohydrate Polymers</i> , 2017 , 157, 766-774	10.3	49

415	Dandelion-like Fe3O4@CuTNPc hierarchical nanostructures as a magnetically separable visible-light photocatalyst. <i>Journal of Materials Chemistry</i> , 2011 , 21, 12083		49
414	Rutile TiO2 nanowires on anatase TiO2 nanofibers: a branched heterostructured photocatalysts via interface-assisted fabrication approach. <i>Journal of Colloid and Interface Science</i> , 2011 , 363, 157-64	9.3	48
413	Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons. <i>Nanoscale</i> , 2015 , 7, 1073-80	7.7	47
412	Hollow CuFe2O4/Fe2O3 composite with ultrathin porous shell for acetone detection at ppb levels. <i>Sensors and Actuators B: Chemical</i> , 2018 , 258, 436-446	8.5	47
411	One-dimensional nanostructure field-effect sensors for gas detection. <i>Sensors</i> , 2014 , 14, 13999-4020	3.8	46
410	Direct Z-scheme heterostructure of p-CuAlO/n-BiWO composite nanofibers for efficient overall water splitting and photodegradation. <i>Journal of Colloid and Interface Science</i> , 2019 , 550, 170-179	9.3	45
409	Photocatalytic Reduction of Graphene Oxide-TiO Nanocomposites for Improving Resistive-Switching Memory Behaviors. <i>Small</i> , 2018 , 14, e1801325	11	45
408	Rutile TiO2 nanowire array infiltrated with anatase nanoparticles as photoanode for dye-sensitized solar cells: enhanced cell performance via the rutileEnatase heterojunction. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 3309	13	45
407	ZnO ultraviolet random laser diode on metal copper substrate. <i>Optics Express</i> , 2014 , 22, 16731-7	3.3	45
406	Stability of p-type conductivity in nitrogen-doped ZnO thin film. <i>Applied Physics Letters</i> , 2008 , 92, 0521	06.4	45
405	Pectinate nanofiber mat with high absorbency and antibacterial activity: A potential superior wound dressing to alginate and chitosan nanofiber mats. <i>Carbohydrate Polymers</i> , 2017 , 174, 591-600	10.3	44
404		10.3 3.4	44
	wound dressing to alginate and chitosan nanofiber mats. <i>Carbohydrate Polymers</i> , 2017 , 174, 591-600 Production, structure, and optical properties of ZnO nanocrystals embedded in CaF2 matrix.		
404	wound dressing to alginate and chitosan nanofiber mats. <i>Carbohydrate Polymers</i> , 2017 , 174, 591-600 Production, structure, and optical properties of ZnO nanocrystals embedded in CaF2 matrix. <i>Applied Physics Letters</i> , 2003 , 83, 1210-1212 Reversible alternation between bipolar and unipolar resistive switching in Ag/MoS2/Au structure	3.4	44
404	wound dressing to alginate and chitosan nanofiber mats. <i>Carbohydrate Polymers</i> , 2017 , 174, 591-600 Production, structure, and optical properties of ZnO nanocrystals embedded in CaF2 matrix. <i>Applied Physics Letters</i> , 2003 , 83, 1210-1212 Reversible alternation between bipolar and unipolar resistive switching in Ag/MoS2/Au structure for multilevel flexible memory. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 7195-7200 Multifunctional ZnO/Ag nanorod array as highly sensitive substrate for surface enhanced Raman	3·4 7·1	44
404 403 402	wound dressing to alginate and chitosan nanofiber mats. <i>Carbohydrate Polymers</i> , 2017 , 174, 591-600 Production, structure, and optical properties of ZnO nanocrystals embedded in CaF2 matrix. <i>Applied Physics Letters</i> , 2003 , 83, 1210-1212 Reversible alternation between bipolar and unipolar resistive switching in Ag/MoS2/Au structure for multilevel flexible memory. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 7195-7200 Multifunctional ZnO/Ag nanorod array as highly sensitive substrate for surface enhanced Raman detection. <i>Colloids and Surfaces B: Biointerfaces</i> , 2012 , 94, 157-62 Synthesis and characterization of Sb/CNT and Bi/CNT composites as anode materials for lithium-ion	3.4 7.1	44 44 43
404 403 402 401	Production, structure, and optical properties of ZnO nanocrystals embedded in CaF2 matrix. <i>Applied Physics Letters</i> , 2003 , 83, 1210-1212 Reversible alternation between bipolar and unipolar resistive switching in Ag/MoS2/Au structure for multilevel flexible memory. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 7195-7200 Multifunctional ZnO/Ag nanorod array as highly sensitive substrate for surface enhanced Raman detection. <i>Colloids and Surfaces B: Biointerfaces</i> , 2012 , 94, 157-62 Synthesis and characterization of Sb/CNT and Bi/CNT composites as anode materials for lithium-ion batteries. <i>Materials Letters</i> , 2008 , 62, 2092-2095 Polylactide nanofibers delivering doxycycline for chronic wound treatment. <i>Materials Science and</i>	3.4 7.1 6 3.3	44 44 43 43

397	Excitonic properties of ZnO nanocrystalline films prepared by oxidation of zinc-implanted silica. Journal Physics D: Applied Physics, 2004 , 37, 3025-3029	3	42	
396	Nanofibers of LiMn2O4 by electrospinning. <i>Journal of Colloid and Interface Science</i> , 2005 , 285, 163-6	9.3	42	
395	Revisiting Pt/TiO photocatalysts for thermally assisted photocatalytic reduction of CO. <i>Nanoscale</i> , 2020 , 12, 7000-7010	7.7	42	
394	Flexible, Conformal Organic Synaptic Transistors on Elastomer for Biomedical Applications. <i>Advanced Functional Materials</i> , 2019 , 29, 1901107	15.6	40	
393	Enhanced ultraviolet emission and improved spatial distribution uniformity of ZnO nanorod array light-emitting diodes via Ag nanoparticles decoration. <i>Nanoscale</i> , 2013 , 5, 8634-9	7.7	40	
392	Up-Conversion Luminescence of NaYF4:Yb3+/Er3+ Nanoparticles Embedded into PVP Nanotubes with Controllable Diameters. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 5787-5791	3.8	40	
391	Preferred orientation of ZnO nanoparticles formed by post-thermal annealing zinc implanted silica. <i>Solid State Communications</i> , 2002 , 121, 531-536	1.6	40	
390	Flexible solid-state supercapacitors based on freestanding electrodes of electrospun polyacrylonitrile@polyaniline core-shell nanofibers. <i>Electrochimica Acta</i> , 2015 , 176, 293-300	6.7	39	
389	Photoassisted Electroforming Method for Reliable Low-Power OrganicIhorganic Perovskite Memristors. <i>Advanced Functional Materials</i> , 2020 , 30, 1910151	15.6	39	
388	Effect of SiO2 Spacer-Layer Thickness on Localized Surface Plasmon-Enhanced ZnO Nanorod Array LEDs. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 1653-60	9.5	39	
387	Coexistence of an anatase/TiO2(B) heterojunction and an exposed (001) facet in TiO2 nanoribbon photocatalysts synthesized via a fluorine-free route and topotactic transformation. <i>Nanoscale</i> , 2014 , 6, 5329-37	7.7	39	
386	Enhanced electrochromic properties of a TiO2 nanowire array via decoration with anatase nanoparticles. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 7891	7.1	39	
385	Controllable fabrication of cadmium phthalocyanine nanostructures immobilized on electrospun polyacrylonitrile nanofibers with high photocatalytic properties under visible light. <i>Catalysis Communications</i> , 2011 , 12, 880-885	3.2	39	
384	Enhanced ultraviolet emission from highly dispersed ZnO quantum dots embedded in poly(vinyl pyrrolidone) electrospun nanofibers. <i>Journal of Colloid and Interface Science</i> , 2010 , 347, 215-20	9.3	39	
383	The photoluminescence of ZnO thin films grown on Si (1 0 0) substrate by plasma-enhanced chemical vapor deposition. <i>Journal of Crystal Growth</i> , 2002 , 240, 479-483	1.6	39	
382	Enhanced Solar Photothermal Catalysis over Solution Plasma Activated TiO. <i>Advanced Science</i> , 2020 , 7, 2000204	13.6	38	
381	Octahedral-Like CuO/InO Mesocages with Double-Shell Architectures: Rational Preparation and Application in Hydrogen Sulfide Detection. <i>ACS Applied Materials & Detection & Materials & Ma</i>	9 .5	38	
380	Effect of oxygen-related surface adsorption on the efficiency and stability of ZnO nanorod array ultraviolet light-emitting diodes. <i>Applied Physics Letters</i> , 2012 , 100, 203101	3.4	38	

379	Zinc phthalocyanine hierarchical nanostructure with hollow interior space: solvent-thermal synthesis and high visible photocatalytic property. <i>Journal of Colloid and Interface Science</i> , 2010 , 348, 37-42	9.3	38
378	The structure and photoluminescence of ZnO films prepared by post-thermal annealing zinc-implanted silica. <i>Journal of Crystal Growth</i> , 2002 , 240, 152-156	1.6	38
377	Freestanding hierarchically porous carbon framework decorated by polyaniline as binder-free electrodes for high performance supercapacitors. <i>Journal of Power Sources</i> , 2016 , 329, 516-524	8.9	38
376	Cross-Linked Pectin Nanofibers with Enhanced Cell Adhesion. <i>Biomacromolecules</i> , 2018 , 19, 490-498	6.9	37
375	Assembling n-Bi2MoO6 Nanosheets on Electrospun p-CuAl2O4 Hollow Nanofibers: Enhanced Photocatalytic Activity Based on Highly Efficient Charge Separation and Transfer. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 10714-10723	8.3	37
374	Photocatalytic activities of heterostructured TiO2-graphene porous microspheres prepared by ultrasonic spray pyrolysis. <i>Journal of Alloys and Compounds</i> , 2014 , 584, 180-184	5.7	37
373	Nanofibers and nanoplatelets of MoO3 via an electrospinning technique. <i>Journal of Physics and Chemistry of Solids</i> , 2006 , 67, 1869-1872	3.9	37
372	Reducing the content of carrier polymer in pectin nanofibers by electrospinning at low loading followed with selective washing. <i>Materials Science and Engineering C</i> , 2016 , 59, 885-893	8.3	36
371	Formation of holographic fringes on photochromic Ag/TiO2 nanocomposite films. <i>Applied Physics Letters</i> , 2009 , 94, 074104	3.4	36
370	Preparation of LiCoO2 nanofibers by electrospinning technique. <i>Journal of Physics and Chemistry of Solids</i> , 2006 , 67, 1423-1426	3.9	36
369	MgO nanofibres via an electrospinning technique. <i>Journal of Materials Science</i> , 2006 , 41, 3821-3824	4.3	36
368	Structural and optical properties of MgxZn1NO thin films prepared by the solgel method. <i>Journal of Crystal Growth</i> , 2002 , 234, 427-430	1.6	36
367	Transferable and Flexible Artificial Memristive Synapse Based on WOx Schottky Junction on Arbitrary Substrates. <i>Advanced Electronic Materials</i> , 2018 , 4, 1800373	6.4	36
366	Interplay between Static and Dynamic Energy Transfer in Biofunctional Upconversion Nanoplatforms. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 2518-23	6.4	35
365	Ultrasensitive Flexible Proximity Sensor Based on Organic Crystal for Location Detection. <i>ACS Applied Materials & Detection and Sensor Based on Organic Crystal for Location Detection. ACS Applied Materials & Detection and Sensor Based on Organic Crystal for Location Detection. ACS Applied Materials & Detection and Sensor Based on Organic Crystal for Location Detection. ACS Applied Materials & Detection and Sensor Based on Organic Crystal for Location Detection. ACS Applied Materials & Detection and Sensor Based on Organic Crystal for Location Detection. ACS Applied Materials & Detection and Sensor Based on Organic Crystal for Location Detection. ACS Applied Materials & Detection and Sensor Based on Organic Crystal for Location Detection and Sensor Based on Organic Crystal for Location Detection and Sensor Based on Organic Crystal for Location Detection and Sensor Based on Organic Crystal for Location Detection and Sensor Based Organic Crystal for Location Detection and Sensor Based Organic Crystal for Location Detection Detection and Sensor Based Organic Crystal For Location Detection and Sensor Based Organic Crystal For Location Detection Detec</i>	9.5	35
364	Magnetically separable Bi2MoO6/ZnFe2O4 heterostructure nanofibers: Controllable synthesis and enhanced visible light photocatalytic activity. <i>Journal of Alloys and Compounds</i> , 2018 , 747, 916-925	5.7	35
363	Controllable fabrication of oriented micro/nanowire arrays of dibenzo-tetrathiafulvalene by a multiple drop-casting method. <i>Nanoscale</i> , 2014 , 6, 1323-8	7.7	35
362	Photovoltaic properties of graphene oxide sheets beaded with ZnO nanoparticles. <i>Journal of Solid State Chemistry</i> , 2011 , 184, 881-887	3.3	35

(2002-2017)

361	Enhanced near-UV electroluminescence from p-GaN/i-Al2O3/n-ZnO heterojunction LEDs by optimizing the insulator thickness and introducing surface plasmons of Ag nanowires. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 3288-3295	7.1	34
3 60	Structural and optical properties of nanocrystalline ZnO films grown by cathodic electrodeposition on Si substrates. <i>Physica B: Condensed Matter</i> , 2002 , 322, 31-36	2.8	34
359	Cycling-Induced Degradation of OrganicIhorganic Perovskite-Based Resistive Switching Memory. <i>Advanced Materials Technologies</i> , 2019 , 4, 1800238	6.8	34
358	Construction of InO/ZnO yolk-shell nanofibers for room-temperature NO detection under UV illumination. <i>Journal of Hazardous Materials</i> , 2021 , 403, 124093	12.8	34
357	Reusable and Flexible g-C3N4/Ag3PO4/Polyacrylonitrile Heterojunction Nanofibers for Photocatalytic Dye Degradation and Oxygen Evolution. <i>ACS Applied Nano Materials</i> , 2019 , 2, 3081-3090	5.6	33
356	InBIAcarbon nanofibers/Au ternary synergetic system: hierarchical assembly and enhanced visible-light photocatalytic activity. <i>Journal of Hazardous Materials</i> , 2015 , 283, 599-607	12.8	33
355	Accurate identification of layer number for few-layer WS and WSe via spectroscopic study. <i>Nanotechnology</i> , 2018 , 29, 124001	3.4	33
354	Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer. <i>Applied Physics Letters</i> , 2012 , 101, 142101	3.4	33
353	Photoluminescence study of ZnO nanotubes under hydrostatic pressure. <i>Applied Physics Letters</i> , 2006 , 88, 133127	3.4	33
352	Control over energy level match in Keggin polyoxometallate-TiO2 microspheres for multielectron photocatalytic reactions. <i>Applied Catalysis B: Environmental</i> , 2018 , 234, 79-89	21.8	32
351	Simple route to self-assembled BiOCl networks photocatalyst from nanosheet with exposed (001) facet. <i>Micro and Nano Letters</i> , 2012 , 7, 152	0.9	32
350	Excitonic electroluminescence from ZnO-based heterojunction light emitting diodes. <i>Journal Physics D: Applied Physics</i> , 2008 , 41, 155103	3	32
349	Thermal coupled photoconductivity as a tool to understand the photothermal catalytic reduction of CO2. <i>Chinese Journal of Catalysis</i> , 2020 , 41, 154-160	11.3	32
348	A flexible conformable artificial organ-damage memory system towards hazardous gas leakage based on a single organic transistor. <i>Materials Horizons</i> , 2019 , 6, 717-726	14.4	30
347	Significant improvement of near-UV electroluminescence from ZnO quantum dot LEDs via coupling with carbon nanodot surface plasmons. <i>Nanoscale</i> , 2017 , 9, 14592-14601	7.7	30
346	Solvothermal synthesis and electrochemical properties of 3D flower-like iron phthalocyanine hierarchical nanostructure. <i>Nanoscale</i> , 2011 , 3, 5126	7.7	30
345	Pulsed laser deposition of high Mg-content MgZnO films: Effects of substrate temperature and oxygen pressure. <i>Journal of Applied Physics</i> , 2009 , 106, 073518	2.5	30
344	High intense UV-luminescence of nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films. <i>Journal of Crystal Growth</i> , 2002 , 240, 463-466	1.6	30

343	Heterojunctions of p-BiOI Nanosheets/n-TiOlNanofibers: Preparation and Enhanced Visible-Light Photocatalytic Activity. <i>Materials</i> , 2016 , 9,	3.5	30
342	Graphitic carbon nitride/BiOI loaded on electrospun silica nanofibers with enhanced photocatalytic activity. <i>Applied Surface Science</i> , 2018 , 455, 952-962	6.7	29
341	A facile fabrication of nitrogen-doped electrospun In 2 O 3 nanofibers with improved visible-light photocatalytic activity. <i>Applied Surface Science</i> , 2017 , 391, 668-676	6.7	29
340	Heteroepitaxial Growth and Spatially Resolved Cathodoluminescence of ZnO/MgZnO Coaxial Nanorod Arrays. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 16148-16152	3.8	29
339	Structural properties and photoluminescence of ZnO nanowalls prepared by two-step growth with oxygen-plasma-assisted molecular beam epitaxy. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, 3035-	30 ¹ 42	29
338	Sn-doping induced oxygen vacancies on the surface of the In2O3 nanofibers and their promoting effect on sensitive NO2 detection at low temperature. <i>Sensors and Actuators B: Chemical</i> , 2020 , 317, 128194	8.5	28
337	The structure and photoluminescence properties of ZnO nanobelts prepared by a thermal evaporation process. <i>Journal of Luminescence</i> , 2009 , 129, 340-343	3.8	28
336	Electrospun nanofibers of poly(ethylene oxide)/teraamino-phthalocyanine copper(II) hybrids and its photoluminescence properties. <i>Journal of Physics and Chemistry of Solids</i> , 2007 , 68, 2337-2340	3.9	28
335	Effect of the growth temperature on ZnO thin films grown by plasma enhanced chemical vapor deposition. <i>Thin Solid Films</i> , 2002 , 414, 170-174	2.2	28
334	Structure and photoluminescence properties of ZnO microrods. <i>Journal of Applied Physics</i> , 2003 , 94, 5	60 <u>5</u> .560)8 28
333	Growth of ultrathin SiO2 on Si by surface irradiation with an O2+Ar electron cyclotron resonance microwave plasma at low temperatures. <i>Journal of Applied Physics</i> , 1999 , 85, 1911-1915	2.5	28
332	A crosslinking strategy to make neutral polysaccharide nanofibers robust and biocompatible: With konjac glucomannan as an example. <i>Carbohydrate Polymers</i> , 2019 , 215, 130-136	10.3	27
331	Oxidized carbon quantum dotgraphene oxide nanocomposites for improving data retention of resistive switching memory. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 2026-2033	7:1	27
330	Thermally Stable Pyrochlore Y2Ti2O7: Eu3+ Orange R ed Emitting Phosphors. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 658-662	3.8	27
329	Effects of compliance currents on the formation and rupture of conducting filaments in unipolar resistive switching of CoO film. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 385105	3	27
328	Three-dimensional hierarchical CeO2 nanowalls/TiO2 nanofibers heterostructure and its high photocatalytic performance. <i>Journal of Sol-Gel Science and Technology</i> , 2010 , 55, 105-110	2.3	27
327	Formation and luminescence of ZnO nanoparticles embedded in MgO films. <i>Physical Review B</i> , 2005 , 71,	3.3	27

(2010-2017)

325	Protecting hydrogenation-generated oxygen vacancies in BiVO4 photoanode for enhanced water oxidation with conformal ultrathin amorphous TiO2 layer. <i>Applied Surface Science</i> , 2017 , 403, 389-395	6.7	26	
324	Analytical Modeling of OrganicIhorganic CH3NH3PbI3 Perovskite Resistive Switching and its Application for Neuromorphic Recognition. <i>Advanced Theory and Simulations</i> , 2018 , 1, 1700035	3.5	26	
323	Color-Tunable ZnO/GaN Heterojunction LEDs Achieved by Coupling with Ag Nanowire Surface Plasmons. <i>ACS Applied Materials & Discourse Surfaces</i> , 2018 , 10, 15812-15819	9.5	26	
322	Bismuth oxychloride (BiOCl)/copper phthalocyanine (CuTNPc) heterostructures immobilized on electrospun polyacrylonitrile nanofibers with enhanced activity for floating photocatalysis. <i>Journal of Colloid and Interface Science</i> , 2018 , 525, 187-195	9.3	26	
321	Immobilization of ZnO/polyaniline heterojunction on electrospun polyacrylonitrile nanofibers and enhanced photocatalytic activity. <i>Materials Chemistry and Physics</i> , 2018 , 214, 507-515	4.4	26	
320	. IEEE Journal of the Electron Devices Society, 2018 , 6, 714-720	2.3	26	
319	A photolithographic stretchable transparent electrode for an all-solution-processed fully transparent conformal organic transistor array. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 5385-5393	7.1	25	
318	Discrete heterojunction nanofibers of BiFeO/BiWO: Novel architecture for effective charge separation and enhanced photocatalytic performance. <i>Journal of Colloid and Interface Science</i> , 2020 , 572, 257-268	9.3	25	
317	Moisture-powered memristor with interfacial oxygen migration for power-free reading of multiple memory states. <i>Nano Energy</i> , 2020 , 71, 104628	17.1	25	
316	Highly uniform switching of HfO2N based RRAM achieved through Ar plasma treatment for low power and multilevel storage. <i>Applied Surface Science</i> , 2018 , 458, 216-221	6.7	25	
315	Fabrication of Cr2O3/Al2O3 composite nanofibers by electrospinning. <i>Journal of Materials Science</i> , 2007 , 42, 8470-8472	4.3	25	
314	Photoluminescence of F-passivated ZnO nanocrystalline films made from thermally oxidized ZnF2films. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, 5143-5150	1.8	25	
313	Fabrication of efficient PbS colloidal quantum dot solar cell with low temperature sputter-deposited ZnO electron transport layer. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 169, 264-2	6 ⁶ 9-4	24	
312	Direct Effect of Dielectric Surface Energy on Carrier Transport in Organic Field-Effect Transistors. <i>ACS Applied Materials & ACS ACS Applied Materials & ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	24	
311	Bi2WO6/ZnFe2O4 heterostructures nanofibers: Enhanced visible-light photocatalytic activity and magnetically separable property. <i>Materials Research Bulletin</i> , 2018 , 104, 124-133	5.1	24	
310	Flexible transparent heaters based on silver nanotrough meshes. <i>Journal of Alloys and Compounds</i> , 2016 , 664, 764-769	5.7	24	
309	Size-dependent photochromism-based holographic storage of Ag/TiO2 nanocomposite film. <i>Applied Physics Letters</i> , 2011 , 98, 221905	3.4	24	
308	The ultralow driven current ultraviolet-blue light-emitting diode based on n-ZnO nanowires/i-polymer/p-GaN heterojunction. <i>Applied Physics Letters</i> , 2010 , 97, 173508	3.4	24	

307	Magnetic-field-assisted rapid ultrasensitive immunoassays using Fe3O4/ZnO/Au nanorices as Raman probes. <i>Biosensors and Bioelectronics</i> , 2010 , 26, 918-22	11.8	24
306	Heterostructures of ZnO Microrods Coated with Iron Oxide Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 15980-15984	3.8	24
305	Strain-Discriminable Pressure/Proximity Sensing of Transparent Stretchable Electronic Skin Based on PEDOT:PSS/SWCNT Electrodes. <i>ACS Applied Materials & Discrete Sump</i> ; Interfaces, 2020 , 12, 55083-55093	9.5	24
304	Controlled synthesis of Ag-coated TiO2 nanofibers and their enhanced effect in photocatalytic applications. <i>Applied Surface Science</i> , 2013 , 280, 720-725	6.7	23
303	Improved resistive switching reliability by using dual-layer nanoporous carbon structure. <i>Applied Physics Letters</i> , 2017 , 111, 183504	3.4	23
302	Oxygen-concentration effect on p-type CuAlOx resistive switching behaviors and the nature of conducting filaments. <i>Applied Physics Letters</i> , 2014 , 104, 093512	3.4	23
301	A new approach to white light emitting diodes of p-GaN/i-ZnO/n-ZnO heterojunctions. <i>Applied Physics B: Lasers and Optics</i> , 2008 , 92, 185-188	1.9	23
300	ZnO hexagonal prisms grown onto p-Si (111) substrate from poly (vinylpyrrolidone) assisted electrochemical assembly. <i>Journal of Crystal Growth</i> , 2006 , 290, 405-409	1.6	23
299	Sp2 clustering-induced improvement of resistive switching uniformity in Cu/amorphous carbon/Pt electrochemical metallization memory. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 5420-5425	7.1	22
298	Analog D igital Hybrid Memristive Devices for Image Pattern Recognition with Tunable Learning Accuracy and Speed. <i>Small Methods</i> , 2019 , 3, 1900160	12.8	22
297	Hierarchical heterostructures of p-type bismuth oxychloride nanosheets on n-type zinc ferrite electrospun nanofibers with enhanced visible-light photocatalytic activities and magnetic separation properties. <i>Journal of Colloid and Interface Science</i> , 2018 , 516, 110-120	9.3	22
296	Crosslinked pectin nanofibers with well-dispersed Ag nanoparticles: Preparation and characterization. <i>Carbohydrate Polymers</i> , 2018 , 199, 68-74	10.3	22
295	High ON/OFF ratio single crystal transistors based on ultrathin thienoacene microplates. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 5382-5388	7.1	22
294	Controllable synthesis of Zn2TiO4@carbon core/shell nanofibers with high photocatalytic performance. <i>Journal of Hazardous Materials</i> , 2012 , 229-230, 265-72	12.8	22
293	Detection of label-free H2O2 based on sensitive Au nanorods as sensor. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 102, 327-30	6	22
292	The optical properties of ZnO hexagonal prisms grown from poly (vinylpyrrolidone)-assisted electrochemical assembly onto Si (111) substrate. <i>Journal of Chemical Physics</i> , 2005 , 122, 174703	3.9	22
291	The effect of surface properties on visible luminescence of nanosized colloidal ZnO membranes. Journal of Colloid and Interface Science, 2005 , 282, 403-7	9.3	22
290	Fabrication of g-C3N4/SiO2-Au composite nanofibers with enhanced visible photocatalytic activity. <i>Ceramics International</i> , 2017 , 43, 15699-15707	5.1	22

(2021-2016)

289	Fabrication of silver nanowires and metal oxide composite transparent electrodes and their application in UV light-emitting diodes. <i>Journal Physics D: Applied Physics</i> , 2016 , 49, 325103	3	22
288	Correlation between band alignment and enhanced photocatalysis: a case study with anatase/TiO2(B) nanotube heterojunction. <i>Dalton Transactions</i> , 2015 , 44, 13331-9	4.3	21
287	Molybdenum diselenide nanosheet/carbon nanofiber heterojunctions: Controllable fabrication and enhanced photocatalytic properties with a broad-spectrum response from visible to infrared light. <i>Journal of Colloid and Interface Science</i> , 2018 , 518, 1-10	9.3	21
286	Forming-free electrochemical metallization resistive memory devices based on nanoporous TiOxNy thin film. <i>Journal of Alloys and Compounds</i> , 2016 , 656, 612-617	5.7	21
285	Flexible, high-sensitive, and wearable strain sensor based on organic crystal for human motion detection. <i>Organic Electronics</i> , 2018 , 61, 304-311	3.5	21
284	Highly electron-depleted ZnO/ZnFe2O4/Au hollow meshes as an advanced material for gas sensing application. <i>Sensors and Actuators B: Chemical</i> , 2019 , 297, 126769	8.5	21
283	Influence of Flux on Morphology and Luminescence Properties of Phosphors: A Case Study on Y1.55Ti2O7:0.45Eu3+. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 1447-1453	3.8	21
282	Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties. <i>AIP Advances</i> , 2011 , 1, 022145	1.5	21
281	The infrared fingerprint signals of silica nanoparticles and its application in immunoassay. <i>Applied Physics Letters</i> , 2012 , 100, 013701	3.4	21
280	The effect of nitrogen on the microstructure and the luminescence properties of a-C:H thin films. <i>Solid State Communications</i> , 1996 , 100, 597-602	1.6	21
279	Bright and High-Color-Rendering White Light-Emitting Diode Using Color-Tunable Oxychloride and Oxyfluoride Phosphors. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 18713-18720	3.8	20
278	Waveband-dependent photochemical processing of graphene oxide in fabricating reduced graphene oxide film and graphene oxide anoparticles film. <i>RSC Advances</i> , 2014 , 4, 2404-2408	3.7	20
277	A multiphase strategy for realizing green cathodoluminescence in 12CaO[7Al2O3-CaCeAl3O7:Ce3+,Tb3+ conductive phosphor. <i>Dalton Transactions</i> , 2013 , 42, 16311-7	4.3	20
276	Photoluminescence properties of highly dispersed ZnO quantum dots in polyvinylpyrrolidone nanotubes prepared by a single capillary electrospinning. <i>Journal of Chemical Physics</i> , 2008 , 129, 11470	8 ^{3.9}	20
275	Electrical transport properties in nitrogen-doped p-type ZnO thin film. <i>Semiconductor Science and Technology</i> , 2006 , 21, 1522-1526	1.8	20
274	Photo-induced birefringence and polarization holography in polymer films containing spirooxazine compounds pre-irradiated by UV light. <i>Optics Communications</i> , 2004 , 242, 115-122	2	20
273	The structure and character of CdSe nanocrystals capped ZnO layer for phase transfer from hexane to ethanol solution. <i>Surface Science</i> , 2005 , 582, 61-68	1.8	20
272	Sub-Femtojoule-Energy-Consumption Conformable Synaptic Transistors Based on Organic Single-Crystalline Nanoribbons. <i>Advanced Functional Materials</i> , 2021 , 31, 2007894	15.6	20

271	Bilayer TiO2 photoanode consisting of a nanowireflanoparticle bottom layer and a spherical voids scattering layer for dye-sensitized solar cells. <i>New Journal of Chemistry</i> , 2015 , 39, 4845-4851	3.6	19
270	MoSe2/TiO2 Nanofibers for Cycling Photocatalytic Removing Water Pollutants under UVIVisINIR Light. ACS Applied Nano Materials, 2020, 3, 2278-2287	5.6	19
269	Complementary Resistive Switching Observed in Graphene Oxide-Based Memory Device. <i>IEEE Electron Device Letters</i> , 2018 , 39, 488-491	4.4	19
268	Reliability Improvement of Amorphous Carbon Based Resistive Switching Memory by Inserting Nanoporous Layer. <i>IEEE Electron Device Letters</i> , 2016 , 37, 1430-1433	4.4	19
267	Coexistence of bipolar and unipolar resistive switching behaviors in the double-layer Ag/ZnS-Ag/CuAlO2/Pt memory device. <i>Applied Surface Science</i> , 2016 , 360, 338-341	6.7	19
266	Ionic Liquid-Assisted Improvements in the Thermal Stability of CH3NH3PbI3 Perovskite Photovoltaics. <i>Physica Status Solidi - Rapid Research Letters</i> , 2018 , 12, 1800130	2.5	19
265	Controlled Gas Molecules Doping of Monolayer MoS via Atomic-Layer-Deposited AlO Films. <i>ACS Applied Materials & Doping State S</i>	9.5	19
264	Wafer-Scale Coplanar Electrodes for 3D Conformal Organic Single-Crystal Circuits. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500239	6.4	19
263	The effect of PVP on the formation and optical properties ZnO/Ag nanocomposites. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2012 , 405, 1-5	5.1	19
262	Controlled synthesis of PAN/Ag2S composites nanofibers via electrospinning-assisted hydro(solvo)thermal method. <i>Journal of Non-Crystalline Solids</i> , 2011 , 357, 1488-1493	3.9	19
261	A simple route to controllable growth of ZnO nanorod arrays on conducting substrates. CrystEngComm, 2010 , 12, 940-946	3.3	19
260	Photoinduced anisotropy and polarization holographic gratings formed in Ag/TiO2 nanocomposite films. <i>Applied Optics</i> , 2012 , 51, 3357-63	1.7	19
259	Electrospun nanofibers of poly(acrylonitrile)/Eu3+ and their photoluminescence properties. <i>Journal of Physics and Chemistry of Solids</i> , 2010 , 71, 273-278	3.9	19
258	Ultraflexible, Degradable Organic Synaptic Transistors Based on Natural Polysaccharides for Neuromorphic Applications. <i>Advanced Functional Materials</i> , 2020 , 30, 2006271	15.6	19
257	Highly photosensitive thienoacene single crystal microplate transistors via optimized dielectric. <i>Organic Electronics</i> , 2015 , 16, 171-176	3.5	18
256	Ultra-facile and rapid colorimetric detection of Cu with branched polyethylenimine in 100% aqueous solution. <i>Analyst, The</i> , 2018 , 143, 409-414	5	18
255	Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory. <i>Scientific Reports</i> , 2016 , 6, 36701	4.9	18
254	Photolithography-compatible conformal electrodes for high-performance bottom-contact organic single-crystal transistors. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 12699-12706	7.1	18

(2003-2010)

Multifunctional Fe3O4/ZnO nanocomposites with magnetic and optical properties. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 1992-7	1.3	18	
Effects of thermal treatment on the properties of ZnO films deposited on MgO-buffered Si substrates. <i>Journal of Crystal Growth</i> , 2003 , 254, 86-91	1.6	18	
Growth of high quality ZnO thin films at low temperature on Si(100) substrates by plasma enhanced chemical vapor deposition. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2002 , 20, 265-269	2.9	18	
Nitrogen doping polyvinylpyrrolidone-based carbon nanofibers via pyrolysis of g-C3N4 with tunable chemical states and capacitive energy storage. <i>Electrochimica Acta</i> , 2020 , 330, 135212	6.7	18	
Insertion of Nanoscale AgInSbTe Layer between the Ag Electrode and the CH3NH3PbI3 Electrolyte Layer Enabling Enhanced Multilevel Memory. <i>ACS Applied Nano Materials</i> , 2019 , 2, 307-314	5.6	18	
AgNPs-incorporated nanofiber mats: Relationship between AgNPs size/content, silver release, cytotoxicity, and antibacterial activity. <i>Materials Science and Engineering C</i> , 2021 , 118, 111331	8.3	18	
Adsorption Energy Optimization of Co3O4 through Rapid Surface Sulfurization for Efficient Counter Electrode in Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 12524-1253	03.8	17	
Fully transparent conformal organic thin-film transistor array and its application as LED front driving. <i>Nanoscale</i> , 2018 , 10, 3613-3620	7.7	17	
ZnO/ZnFe2O4 Janus Hollow Nanofibers with Magnetic Separability for Photocatalytic Degradation of Water-Soluble Organic Dyes. <i>ACS Applied Nano Materials</i> , 2019 , 2, 4879-4890	5.6	17	
Synthesis of heteroarchitectures of PbS nanostructures well-erected on electrospun TiO2 nanofibers. <i>Journal of Colloid and Interface Science</i> , 2010 , 346, 324-9	9.3	17	
Photoreduced nanocomposites of graphene oxide/N-doped carbon dots toward all-carbon memristive synapses. <i>NPG Asia Materials</i> , 2020 , 12,	10.3	17	
Enhancement of Exciton Emission from Multilayer MoS at High Temperatures: Intervalley Transfer versus Interlayer Decoupling. <i>Small</i> , 2017 , 13, 1700157	11	16	
Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 18559-18566	3.8	16	
The Auger process in multilayer WSe crystals. <i>Nanoscale</i> , 2018 , 10, 17585-17592	7.7	16	
Enhanced Electroluminescence from ZnO Quantum Dot Light-Emitting Diodes via Introducing Al2O3 Retarding Layer and Ag@ZnO Hybrid Nanodots. <i>Advanced Optical Materials</i> , 2017 , 5, 1700493	8.1	16	
Red-emitting LiEuMo2⊠SixO8 phosphors for white light-emitting diodes. <i>Journal of Luminescence</i> , 2011 , 131, 653-656	3.8	16	
Growth and optical properties of ZnO nanorods by introducing ZnO sols prior to hydrothermal process. <i>Materials Letters</i> , 2007 , 61, 3578-3581	3.3	16	
Photochromism and holographic recording in polymer film containing chiral azo molecules derived from amino acid. <i>Optical Materials</i> , 2003 , 22, 187-192	3.3	16	
	Effects of thermal treatment on the properties of ZnO films deposited on MgO-buffered Si substrates. <i>Journal of Crystal Growth</i> , 2003, 254, 86-91 Growth of high quality ZnO thin films at low temperature on Si(100) substrates by plasma enhanced chemical vapor deposition. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2002, 20, 265-269 Nitrogen doping polyvinylpytrolidone-based carbon nanofibers via pyrolysis of g-C3N4 with tunable chemical states and capacitive energy storage. <i>Electrochimica Acta</i> , 2020, 330, 135212 Insertion of Nanoscale AglnSbTe Layer between the Ag Electrode and the CH3NH3Pb13 Electrolyte Layer Enabling Enhanced Multilevel Memory. <i>ACS Applied Nano Materials</i> , 2019, 2, 307-314 AgNPs-incorporated nanofiber mats: Relationship between AgNPs size/content, silver release, cytotoxicity, and antibacterial activity. <i>Materials Science and Engineering C</i> , 2021, 118, 111331 Adsorption Energy Optimization of Co3O4 through Rapid Surface Sulfurization for Efficient Counter Electrode in Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2017, 121, 12524-12531 Fully transparent conformal organic thin-film transistor array and its application as LED front driving. <i>Nanoscale</i> , 2018, 10, 3613-3620 ZnO/ZnFe2O4 Janus Hollow Nanofibers with Magnetic Separability for Photocatalytic Degradation of Water-Soluble Organic Dyes. <i>ACS Applied Nano Materials</i> , 2019, 2, 4879-4890 ZnO/ZnFe2O4 Janus Hollow Nanofibers with Magnetic Separability for Photocatalytic Degradation of Water-Soluble Organic Dyes. <i>ACS Applied Nano Materials</i> , 2019, 2, 4879-4890 Photoreduced nanocomposites of graphene oxide/N-doped carbon dots toward all-carbon memristive synapses. <i>NPG Asia Materials</i> , 2020, 12, Enhancement of Exciton Emission from Multilayer MoS at High Temperatures: Intervalley Transfer versus Interlayer Decoupling. <i>Small</i> , 2017, 13, 1700157 Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films. <i>Journal of Physical Chemistry C</i> ,	Effects of thermal treatment on the properties of ZnO films deposited on MgO-buffered Si substrates. Journal of Crystal Growth, 2003, 254, 86-91 Growth of high quality ZnO thin films at low temperature on Si(100) substrates by plasma enhanced chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 265-269 Nitrogen doping polyvinylpyrrolidone-based carbon nanofibers via pyrolysis of g-C3N4 with tunable chemical states and capacitive energy storage. Electrochimica Acta, 2020, 330, 135212 Insertion of Nanoscale AginSbTe Layer between the Ag Electrode and the CH3NH3Pb13 Electrolyte Layer Enabling Enhanced Multilevel Memory. ACS Applied Nano Materials, 2019, 2, 307-314 AgNPS-incorporated nanofiber mats: Relationship between AgNPs size/content, sliver release, cytotoxicity, and antibacterial activity. Materials Science and Engineering C, 2021, 118, 111331 Adsorption Energy Optimization of Co3O4 through Rapid Surface Sulfurization for Efficient Counter Electrode in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2017, 121, 12524-12530 3.8 Fully transparent conformal organic thin-film transistor array and its application as LED front driving. Nanoscole, 2018, 10, 3613-3620 ZnO/ZnFe2O4 Janus Hollow Nanofibers with Magnetic Separability for Photocatalytic Degradation of Water-Soluble Organic Dyes. ACS Applied Nano Materials, 2019, 2, 4879-4890 \$5.6 Synthesis of heteroarchitectures of PbS nanostructures well-erected on electrospun TiO2 nanofibers. Journal of Colloid and Interface Science, 2010, 346, 324-9 Photoreduced nanocomposites of graphene oxide/N-doped carbon dots toward all-carbon memristive synapses. NPG Asia Materials, 2020, 12, Enhancement of Exciton Emission from Multilayer MoS at High Temperatures: Intervalley Transfer versus Interlayer Decoupling. Small, 2017, 13, 1700157 Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/TiO2 Nanocomposite Films. Journal of Physical Chemistry C, 2018, 10, 17585-17592 The A	Effects of thermal treatment on the properties of ZnO films deposited on MgO-buffered Si substrates. Journal of Crystal Growth, 2003, 254, 86-91 Growth of high quality ZnO thin films at low temperature on Si(100) substrates by plasma enhanced chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 265-269 Nitrogen deping polyvinylpyrrolidone-based carbon nanofibers via pyrolysis of g-C3N4 with tunable chemical states and capacitive energy storage. Electrochimica Acta, 2020, 330, 135212 Insertion of Nanoscale AgInSbTe Layer between the Ag Electrode and the CH3NH3Pbl3 Electrolyte Layer Enabling Enhanced Multilevel Memory. ACS Applied Nano Materials, 2019, 2, 307-314 AgNPs-incorporated nanofiber mats: Relationship between AgNPs size/content, silver release, cytotoxicity, and antibacterial activity. Materials Science and Engineering C, 2021, 118, 111331 Adsorption Energy Optimization of Co3O4 through Rapid Surface Sulfurization for Efficient Counter Electrode in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2017, 121, 12524-12530 38 17 Enlly transparent conformal organic thin-film transistor array and lits application as LED front driving. Manoscale, 2018, 10, 3613-3620 ZnO/ZnFe2O4 Janus Hollow Nanofibers with Magnetic Separability for Photocatalytic Degradation of Water-Soluble Organic Dyes. ACS Applied Nano Materials, 2019, 2, 4879-4890 57 Enhancement of Exciton Emission from Multilayer Mos at High Temperatures: Intervalley Transfer versus Interlayer Decoupling. Small, 2017, 13, 1700157 Polarization-Controlled Bicolor Recording Enhances Holographic Memory in Ag/T102 Al203 Retarding Layer and Ag@ZnO Hybrid Nanodots. Advanced Optical Materials, 2017, 5, 1700493 Enhanced Electroluminescence from ZnO Quantum Dot Light-Emitting Diodes via Introducing Al203 Retarding Layer and Ag@ZnO Hybrid Nanodots. Advanced Optical Materials, 2017, 5, 1700493 Enhanced Electroluminescence from ZnO Quantum Dot Light-Emitting Diodes via Introducing 2011, 1

235	Structure and Photoluminescence of Nano-ZnO Films Grown on a Si (100) Substrate by Oxygen- and Argon-Plasma-Assisted Thermal Evaporation of Metallic Zn. <i>Chinese Physics Letters</i> , 2005 , 22, 998-1001	1.8	16
234	Brain-inspired computing via memory device physics. <i>APL Materials</i> , 2021 , 9, 050702	5.7	16
233	Humidity Effect on Resistive Switching Characteristics of the CHNHPbI Memristor. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 28555-28563	9.5	16
232	Increased open-circuit voltage of ZnO nanowire/PbS quantum dot bulk heterojunction solar cells with solution-deposited Mg(OH)2 interlayer. <i>Physica Status Solidi - Rapid Research Letters</i> , 2016 , 10, 745	5- 7 248	16
231	Laser-induced formation of Au/Pt nanorods with peroxidase mimicking and SERS enhancement properties for application to the colorimetric determination of HO. <i>Mikrochimica Acta</i> , 2018 , 185, 445	5.8	16
230	Plasmonic Optoelectronic Memristor Enabling Fully Light-Modulated Synaptic Plasticity for Neuromorphic Vision <i>Advanced Science</i> , 2021 , e2104632	13.6	16
229	Improved resistive switching characteristics by introducing Ag-nanoclusters in amorphous-carbon memory. <i>Materials Letters</i> , 2015 , 154, 98-102	3.3	15
228	Bismuth oxychloride/carbon nanofiber heterostructures for the degradation of 4-nitrophenol. <i>CrystEngComm</i> , 2015 , 17, 7276-7282	3.3	15
227	An "off-on" colorimetric and fluorometric assay for Cu(II) based on the use of NaYF:Yb(III),Er(III) upconversion nanoparticles functionalized with branched polyethylenimine. <i>Mikrochimica Acta</i> , 2018 , 185, 211	5.8	15
226	Element substitution of kesterite CuZnSnS for efficient counter electrode of dye-sensitized solar cells. <i>Scientific Reports</i> , 2018 , 8, 8714	4.9	15
225	Polarization-dependent and rewritable holographic gratings in Ag/TiO2 nanocomposite films. <i>Optics Communications</i> , 2014 , 318, 1-6	2	15
224	. IEEE Electron Device Letters, 2017 , 38, 1598-1601	4.4	15
223	Conductive SnO2:Sb nanobelts as electrodes for detection of NO2 in ppb level with ultrahigh sensitivity. <i>Applied Physics Letters</i> , 2014 , 104, 073112	3.4	15
222	Room temperature excitonic spontaneous and stimulated emission properties in ZnO/MgZnO multiple quantum wells grown on sapphire substrate. <i>Journal Physics D: Applied Physics</i> , 2007 , 40, 6541-	-6 5 44	15
221	Immobilization of ultrafine Ag nanoparticles on well-designed hierarchically porous silica for high-performance catalysis. <i>Journal of Colloid and Interface Science</i> , 2018 , 530, 345-352	9.3	15
220	Controllable gas selectivity at room temperature based on Ph5T2-modified CuPc nanowire field-effect transistors. <i>Organic Electronics</i> , 2017 , 48, 68-76	3.5	14
219	Improvement of resistive switching memory achieved by using arc-shaped bottom electrode. <i>Applied Physics Express</i> , 2015 , 8, 014101	2.4	14
218	Hierarchically Porous In2O3/In2S3 Heterostructures as Micronano Photocatalytic Reactors Prepared by a Novel Polymer-Assisted Sol G el Freeze-Drying Method. <i>Industrial & amp; Engineering Chemistry Research</i> , 2019 , 58, 14106-14114	3.9	14

217	One-dimensional heterostructures of beta-nickel hydroxide nanoplates/electrospun carbon nanofibers: Controlled fabrication and high capacitive property. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 16162-16170	6.7	14	
216	A novel method for measuring distribution of orientation of one-dimensional ZnO using resonance Raman spectroscopy. <i>Journal of Raman Spectroscopy</i> , 2005 , 36, 1101-1105	2.3	14	
215	Photoluminescence and Optically Pumped Ultraviolet Lasing from Nanocrystalline ZnO Thin Films Prepared by Thermal Oxidation of High-Quality ZnS Thin Films. <i>Chinese Physics Letters</i> , 2002 , 19, 127-13	o ^{1.8}	14	
214	Ultrathin Air-Stable n-Type Organic Phototransistor Array for Conformal Optoelectronics. <i>Scientific Reports</i> , 2018 , 8, 16612	4.9	14	
213	Enhanced Full-Spectrum-Response Photocatalysis and Reusability of MoSe2 via Hierarchical N-Doped Carbon Nanofibers as Heterostructural Supports. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 14314-14322	8.3	14	
212	The detection of copper ions based on photothermal effect of cysteine modified Au nanorods. <i>Sensors and Actuators B: Chemical</i> , 2017 , 248, 761-768	8.5	13	
211	SERS-active liposome@Ag/Au nanocomposite for NIR light-driven drug release. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 154, 150-159	6	13	
21 0	TiO2 nanoparticle-based electron transport layer with improved wettability for efficient planar-heterojunction perovskite solar cell. <i>Journal of Energy Chemistry</i> , 2015 , 24, 717-721	12	13	
209	Global Control of CH3NH3PbI3 Formation with Multifunctional Ionic Liquid for Perovskite Hybrid Photovoltaics. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 10699-10705	3.8	13	
208	Brush-controlled oriented growth of TCNQ microwire arrays for field-effect transistors. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 433-439	7.1	13	
207	Electronic and optoelectronic properties of zinc phthalocyanine single-crystal nanobelt transistors. <i>Organic Electronics</i> , 2016 , 30, 158-164	3.5	13	
206	TiO2 (B) nanosheets mediate phase selective synthesis of TiO2 nanostructured photocatalyst. <i>Applied Surface Science</i> , 2014 , 292, 937-943	6.7	13	
205	Electrospinning preparation and photoluminescence properties of poly (methyl methacrylate)/Eu3+ ions composite nanofibers and nanoribbons. <i>Materials Research Bulletin</i> , 2012 , 47, 321-327	5.1	13	
204	High-Response Identifiable Gas Sensor Based on a Gas-Dielectric ZnPc Nanobelt FET. <i>IEEE Electron Device Letters</i> , 2017 , 38, 1586-1589	4.4	13	
203	Local microstructure and photoluminescence of Er-doped 12CaOl\(^7\)Al2O3 powder. <i>Journal of Rare Earths</i> , 2008 , 26, 433-438	3.7	13	
202	Growth mechanism of ZnO nanocrystals with Zn-rich from dots to rods. <i>Journal of Colloid and Interface Science</i> , 2006 , 298, 172-6	9.3	13	
201	Abnormal high-temperature luminescence enhancement observed in monolayer MoS2 flakes: thermo-driven transition from negatively charged trions to neutral excitons. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 9187-9196	7.1	13	
200	Deposition of Pentacene Thin Film on Polydimethylsiloxane Elastic Dielectric Layer for Flexible Thin-Film Transistors. <i>IEEE Electron Device Letters</i> , 2017 , 38, 1031-1034	4.4	12	

199	The W@WO ohmic contact induces a high-efficiency photooxidation performance. <i>Dalton Transactions</i> , 2017 , 46, 1487-1494	4.3	12
198	Effect of the Deformation State on the Response of a Flexible H2S Sensor Based on a Ph5T2 Single-Crystal Transistor. <i>IEEE Electron Device Letters</i> , 2018 , 39, 119-122	4.4	12
197	Improved switching reliability achieved in HfOx based RRAM with mountain-like surface-graphited carbon layer. <i>Applied Surface Science</i> , 2018 , 440, 107-112	6.7	12
196	Room temperature immobilized BiOI nanosheets on flexible electrospun polyacrylonitrile nanofibers with high visible-light photocatalytic activity. <i>Journal of Sol-Gel Science and Technology</i> , 2016 , 80, 783-792	2.3	12
195	Conformal transistor arrays based on solution-processed organic crystals. <i>Scientific Reports</i> , 2017 , 7, 15367	4.9	12
194	Coexistence of unipolar and bipolar modes in Ag/ZnO/Pt resistive switching memory with oxygen-vacancy and metal-Ag filaments. <i>Chinese Physics B</i> , 2016 , 25, 127303	1.2	12
193	Crosslinked starch nanofibers with high mechanical strength and excellent water resistance for biomedical applications. <i>Biomedical Materials (Bristol)</i> , 2020 , 15, 025007	3.5	12
192	Solution-Grown Serpentine Silver Nanofiber Meshes for Stretchable Transparent Conductors. <i>Advanced Electronic Materials</i> , 2018 , 4, 1800346	6.4	12
191	Interspace modification of titania-nanorod arrays for efficient mesoscopic perovskite solar cells. <i>Applied Surface Science</i> , 2017 , 402, 86-91	6.7	11
190	Bending-durable colloidal quantum dot solar cell using a ZnO nanowire array as a three-dimensional electron transport layer. <i>Applied Physics Letters</i> , 2017 , 110, 163902	3.4	11
189	Gelatin-crosslinked pectin nanofiber mats allowing cell infiltration. <i>Materials Science and Engineering C</i> , 2020 , 112, 110941	8.3	11
188	Rationally designed particle preloading method to improve protein delivery performance of electrospun polyester nanofibers. <i>International Journal of Pharmaceutics</i> , 2016 , 512, 204-212	6.5	11
187	Solvent-Induced Luminescence Variation of Upconversion Nanoparticles. <i>Langmuir</i> , 2016 , 32, 13200-1	132046	11
186	Enhanced Ultraviolet Random Lasing from Au/MgO/ZnO Heterostructure by Introducing p-CuO Hole-Injection Layer. <i>ACS Applied Materials & Interfaces</i> , 2016 , 8, 31485-31490	9.5	11
185	Magnetic-bead-based sub-femtomolar immunoassay using resonant Raman scattering signals of ZnS nanoparticles. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 5013-9	4.4	11
184	Highly sensitive H2S sensors based on ultrathin organic single-crystal microplate transistors. <i>Organic Electronics</i> , 2016 , 32, 94-99	3.5	11
183	Controllable synthesis and enhanced visible photocatalytic degradation performances of Bi2WO6Barbon nanofibers heteroarchitectures. <i>Journal of Sol-Gel Science and Technology</i> , 2014 , 70, 149-158	2.3	11
182	Anisotropic strained cubic MgZnO/MgO multiple-quantum-well nanorods: Growths and optical properties. <i>Applied Physics Letters</i> , 2013 , 102, 031905	3.4	11

181	Ultrasensitive protein detection in terms of multiphonon resonance Raman scattering in ZnS nanocrystals. <i>Applied Physics Letters</i> , 2011 , 98, 253703	3.4	11
180	Growth and optical properties of ZnO nanostructures by vapor transport process. <i>Materials Chemistry and Physics</i> , 2007 , 103, 190-194	4.4	11
179	Facile Fabrication of Ultraflexible Transparent Electrodes Using Embedded Copper Networks for Wearable Pressure Sensors. <i>Advanced Materials Technologies</i> , 2020 , 5, 1900823	6.8	11
178	Electrospun CuAl2O4 hollow nanofibers as visible light photocatalyst with enhanced activity and excellent stability under acid and alkali conditions. <i>CrystEngComm</i> , 2018 , 20, 312-322	3.3	11
177	High-temperature driven inter-valley carrier transfer and significant fluorescence enhancement in multilayer WS. <i>Nanoscale Horizons</i> , 2018 , 3, 598-605	10.8	11
176	p-NiO/n+-Si single heterostructure for one diode-one resistor memory applications. <i>Journal of Alloys and Compounds</i> , 2017 , 721, 520-524	5.7	10
175	Engineering fluorescence intensity and electron concentration of monolayer MoS by forming heterostructures with semiconductor dots. <i>Nanoscale</i> , 2019 , 11, 6544-6551	7.7	10
174	Flexible, Conformable Organic Semiconductor Proximity Sensor Array for Electronic Skin. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2000306	4.6	10
173	Solution-processed PDMS/SWCNT porous electrodes with high mass loading: toward high performance all-stretchable-component lithium ion batteries. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 27	18-272	6 ¹⁰
172	320-nm Flexible Solution-Processed 2,7-dioctyl[1] benzothieno[3,2-b]benzothiophene Transistors. <i>Materials</i> , 2017 , 10,	3.5	10
171	Erasure mechanisms of polarization holographic gratings in spirooxazine-doped polymer films. Journal of Applied Polymer Science, 2009 , 111, 2157-2162	2.9	10
170	Electrospun nanofibers of NiO/SiO2 composite. <i>Journal of Physics and Chemistry of Solids</i> , 2009 , 70, 13	743:1537	7 10
169	Structural, optical and photoelectric properties of ZnO:In and Mg x Zn1 ☑ O nanofilms prepared by sol-gel method. <i>Journal of Sol-Gel Science and Technology</i> , 2006 , 39, 57-62	2.3	10
168	Optical Properties of Mg x Zn1 O Polycrystalline Thin Films Prepared by Sol-Gel Deposition Method. <i>Journal of Sol-Gel Science and Technology</i> , 2002 , 23, 231-234	2.3	10
167	The dependence of emission spectra of rare earth ion on the band-gap energy of MgxZn1NO alloy. <i>Journal of Crystal Growth</i> , 2003 , 249, 163-166	1.6	10
166	Raman and photoluminescence studies on nanocrystalline ZnO grown on GaInPAs substrates. Journal of Crystal Growth, 2005 , 285, 24-30	1.6	10
165	Dual Buffer Layers for Developing Electrochemical Metallization Memory With Low Current and High Endurance. <i>IEEE Electron Device Letters</i> , 2021 , 42, 308-311	4.4	10
164	Transparent Nb-doped TiO films with the [001] preferred orientation for efficient photocatalytic oxidation performance. <i>Dalton Transactions</i> , 2017 , 46, 15363-15372	4.3	9

163	Dielectric Selection for Solution-Processed High-Mobility TIPS-Pentacene Microwire Field-Effect Transistors. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1801984	4.6	9
162	Targeted labeling of an early-stage tumor spheroid in a chorioallantoic membrane model with upconversion nanoparticles. <i>Nanoscale</i> , 2015 , 7, 1596-600	7.7	9
161	Bidirectional Photochromism via Anchoring of Carbon Dots to TiO Porous Films. <i>ACS Applied Materials & Acs Applied Materials & Acs Applied</i>	9.5	9
160	Influence of a solution-deposited rutile layer on the morphology of TiO2 nanorod arrays and the performance of nanorod-based dye-sensitized solar cells. <i>RSC Advances</i> , 2016 , 6, 10450-10455	3.7	9
159	UV-resistant holographic data storage in noble-metal/semiconductor nanocomposite films with electron-acceptors. <i>Optical Materials Express</i> , 2018 , 8, 1143	2.6	9
158	Multifunctional NaYF:Yb,Er@PE@FeO nanocomposites for magnetic-field-assisted upconversion imaging guided photothermal therapy of cancer cells. <i>Dalton Transactions</i> , 2019 , 48, 12850-12857	4.3	9
157	In situ FT-IR reflective absorption spectroscopy for characterization of SiO2 thin films deposited using sputtering-type electron cyclotron resonance microwave plasma. <i>Applied Surface Science</i> , 1997 , 121-122, 228-232	6.7	9
156	Preparation and visible emission of Er-doped 12CaO x 7Al2O3 powder. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 1458-63	1.3	9
155	Photoluminescence of ZnO Nanocrystals Embedded in BaF2 Matrices by Magnetron Sputtering. Journal of Nanoscience and Nanotechnology, 2008 , 8, 1160-1164	1.3	9
154	Real-time holographic gratings recorded by HeNe laser in polymer films containing spirooxazine compounds pre-irradiated by UV light. <i>Optical Materials</i> , 2005 , 27, 1567-1570	3.3	9
153	Growth of stoichiometric (002) ZnO thin films on Si (001) substrate by using plasma enhanced chemical vapor deposition. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2002 , 20, 1779-1783	2.9	9
152	Synchronously improved stretchability and mobility by tuning the molecular weight for intrinsically stretchable transistors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15646-15654	7.1	9
151	Revisiting cocatalyst/TiO2 photocatalyst in blue light photothermalcatalysis. <i>Catalysis Today</i> , 2019 , 335, 286-293	5.3	9
150	Blurred Electrode for Low Contact Resistance in Coplanar Organic Transistors. ACS Nano, 2021, 15, 11	55161 / 6	6 9
149	Magnetic Upconversion Luminescent Nanocomposites with Small Size and Strong Super-Paramagnetism: Polyelectrolyte-Mediated Multimagnetic-Beads Embedding. <i>ACS Applied Nano Materials</i> , 2018 , 1, 145-151	5.6	9
148	Structural Optimization of Oxide/Metal/Oxide Transparent Conductors for High-Performance Low-Emissivity Heaters. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1801287	4.6	9
147	SiO aerogel monolith allows ultralow amounts of TiO for the fast and efficient removal of gaseous pollutants. <i>Dalton Transactions</i> , 2018 , 47, 13608-13615	4.3	9
146	Upconversion luminescence enhancement in NaYF 4 : Yb 3+ , Er 3+ nanoparticles induced by Cd 2+ tridoping. <i>Materials Research Bulletin</i> , 2017 , 90, 151-155	5.1	8

145	Cesium-functionalized pectin as a cathode interlayer for polymer solar cells. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 1592-1596	7.1	8	
144	Enhancing the Intrinsic Stretchability of Micropatterned Gold Film by Covalent Linkage of Carbon Nanotubes for Wearable Electronics. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 1295-1303	4	8	
143	Nature of vacuum-deposited electrode induced thermal irradiation damage on organic transistors. <i>Applied Surface Science</i> , 2019 , 480, 523-528	6.7	8	
142	Fluorescent Holographic Fringes with a Surface Relief Structure Based on Merocyanine Aggregation Driven by Blue-violet Laser. <i>Scientific Reports</i> , 2018 , 8, 3818	4.9	8	
141	Ultrathin Free-Substrate n-Type PTCDI-C13 Transistors With Bilayer Polymer Dielectrics. <i>IEEE Electron Device Letters</i> , 2018 , 39, 1183-1186	4.4	8	
140	Recent progress in ZnO-based heterojunction ultraviolet light-emitting devices. <i>Science Bulletin</i> , 2014 , 59, 1219-1227		8	
139	Spectral modulation through controlling anions in nanocaged phosphors. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 7896	7.1	8	
138	MgZnO/MgO strained multiple-quantum-well nanocolumnar films: Stress-induced structural transition and deep ultraviolet emission. <i>Journal of Alloys and Compounds</i> , 2012 , 513, 399-403	5.7	8	
137	Eu2+, Tb3+, Mn2+Triactivated Ba3MgSi2O8Red-Emitting Phosphors for Near Ultraviolet Lighting Emitting Diodes. <i>ECS Journal of Solid State Science and Technology</i> , 2013 , 2, R213-R217	2	8	
136	Hexamethylenediamine-assisted hydrothermal preparation of uniform ZnO particles and their morphology-dependent photoluminescent properties. <i>Materials Chemistry and Physics</i> , 2009 , 115, 547-	5 9 01	8	
135	Intense luminescence of amorphous Eu2O3 prepared by aqueous solgel method. <i>Journal of Non-Crystalline Solids</i> , 2007 , 353, 1037-1040	3.9	8	
134	Temperature-enhanced ultraviolet emission in ZnO thin film. <i>Journal of Luminescence</i> , 2006 , 119-120, 242-247	3.8	8	
133	Holographic grating recorded by HeNe laser operating at 632.8 nm in polymer film containing pushBull azo dye. <i>Optics Communications</i> , 2003 , 220, 289-295	2	8	
132	Multiple-hologram storage for thin layers of Methyl Orange dyes in polyvinyl alcohol matrices. <i>Optics Letters</i> , 1995 , 20, 1495-7	3	8	
131	Unveiling Bandgap Evolution and Carrier Redistribution in Multilayer WSe2: Enhanced Photon Emission via Heat Engineering. <i>Advanced Optical Materials</i> , 2020 , 8, 1901226	8.1	8	
130	Intensity-modulated LED achieved through integrating p-GaN/n-ZnO heterojunction with multilevel RRAM. <i>Applied Physics Letters</i> , 2018 , 113, 223503	3.4	8	
129	Size-Tunable Low Molecular Weight Pectin-Based Electrospun Nanofibers Blended with Low Content of Poly(ethylene oxide). <i>Journal of Nanoscience and Nanotechnology</i> , 2017 , 17, 681-89	1.3	7	
128	Interface engineering of solution-grown silver nanofiber networks designed as flexible transparent electrodes. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 3924-3933	7.1	7	

127	Efficiency enhanced rutile TiO2 nanowire solar cells based on an Sb2S3 absorber and a CuI hole conductor. <i>New Journal of Chemistry</i> , 2015 , 39, 7243-7250	3.6	7
126	Solution-Processed Single-Crystal Array for High-Performance Conformable Transistors. <i>IEEE Electron Device Letters</i> , 2018 , 39, 595-598	4.4	7
125	The Nature of Lithium-Ion Transport in Low Power Consumption LiFePO4 Resistive Memory with Graphite as Electrode. <i>Physica Status Solidi - Rapid Research Letters</i> , 2018 , 12, 1800320	2.5	7
124	Ultraviolet electroluminescence from Au/MgO/MgxZn1⊠O heterojunction diodes and the observation of Zn-rich cluster emission. <i>Journal of Luminescence</i> , 2014 , 148, 116-120	3.8	7
123	Hyaluronic acid nanofibers crosslinked with a nontoxic reagent. <i>Carbohydrate Polymers</i> , 2021 , 259, 1177	75 70.3	7
122	Directly Spin Coating a Low-Viscosity Organic Semiconductor Solution onto Hydrophobic Surfaces: Toward High-Performance Solution-Processable Organic Transistors. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1901950	4.6	6
121	Ultrasonic spray pyrolysis assembly of a TiO2IWO3Pt multi-heterojunction microsphere photocatalyst using highly crystalline WO3 nanosheets: less is better. <i>New Journal of Chemistry</i> , 2016 , 40, 3225-3232	3.6	6
120	Graphite Microislands Prepared for Reliability Improvement of Amorphous Carbon Based Resistive Switching Memory. <i>Physica Status Solidi - Rapid Research Letters</i> , 2018 , 12, 1800285	2.5	6
119	An ordered array based on vapor-processed phthalocyanine nanoribbons. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 5667-5672	7.1	6
118	Au/Ag nanoalloy shells as near-infrared SERS nanoprobe for the detection of protein. <i>Materials Research Express</i> , 2014 , 1, 045408	1.7	6
117	The synthesis and optical properties of ZnO nanocombs. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 2370-4	1.3	6
116	Photoelectric properties of ZnO: In nanorods/SiO2/Si heterostructure assembled in aqueous solution. <i>Applied Physics B: Lasers and Optics</i> , 2006 , 84, 507-510	1.9	6
115	Flexible All-Inorganic Room-Temperature Chemiresistors Based on Fibrous Ceramic Substrate and Visible-Light-Powered Semiconductor Sensing Layer. <i>Advanced Science</i> , 2021 , 8, e2102471	13.6	6
114	Synchronous-ultrahigh conductive-reactive N-atoms doping strategy of carbon nanofibers networks for high-performance flexible energy storage. <i>Energy Storage Materials</i> , 2022 , 44, 250-262	19.4	6
113	Photo-tunable organic resistive random access memory based on PVP/N-doped carbon dot nanocomposites for encrypted image storage. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 14789-14795	7.1	6
112	Zeolite-Based Memristive Synapse with Ultralow Sub-10-fJ Energy Consumption for Neuromorphic Computation. <i>Small</i> , 2021 , 17, e2006662	11	6
111	Transport in organic single-crystal microbelt for conformal electronics. <i>Applied Physics Letters</i> , 2016 , 108, 103502	3.4	6
110	Ultrasonic spray pyrolysis-assisted preparation of CoS for stable, uniform and efficient counter electrode in dye-sensitized solar cells. <i>Solar Energy</i> , 2019 , 189, 398-403	6.8	5

(2007-2015)

109	Modulation of electron transportation in amorphous and polycrystalline indium inc-oxide films grown by pulse laser deposition. <i>Journal of Non-Crystalline Solids</i> , 2015 , 423-424, 18-24	3.9	5
108	Bias-polarity-dependent UV/visible transferable electroluminescence from ZnO nanorod array LED with graphene oxide electrode supporting layer. <i>Applied Physics Express</i> , 2015 , 8, 095202	2.4	5
107	Two-wavelength exposure enhancement in holographic data storage of spirooxazine-doped polymers. <i>Optics Communications</i> , 2015 , 338, 269-276	2	5
106	Performance enhancement of ZnO nanowires/PbS quantum dot depleted bulk heterojunction solar cells with an ultrathin Al 2 O 3 interlayer. <i>Chinese Physics B</i> , 2018 , 27, 018503	1.2	5
105	Minimization of defects in Nb-doped TiO 2 photocatalysts by molten salt flux. <i>Ceramics International</i> , 2018 , 44, 10249-10257	5.1	5
104	Plasma treatment introduced memory properties in MoS2field-effect transistors. <i>Applied Physics Express</i> , 2016 , 9, 014202	2.4	5
103	Resistive switching performance improvement of amorphous carbon-based electrochemical metallization memory via current stressing. <i>Applied Physics Letters</i> , 2019 , 115, 073501	3.4	5
102	Localized resistive switching in a ZnSAg/ZnS double-layer memory. <i>Journal Physics D: Applied Physics</i> , 2014 , 47, 455101	3	5
101	Single-crystal tetrathiafulvalene microwire arrays formed by drop-casting method in the saturated solvent atmosphere. <i>Synthetic Metals</i> , 2014 , 198, 248-254	3.6	5
100	Formation mechanisms of multiple holographic gratings in spirooxazine-doped polymer films. <i>Optik</i> , 2013 , 124, 139-143	2.5	5
99	Gate-modulated transport properties and mechanism for nanowire cross junction based on SnO2 semiconductor. <i>Applied Physics Letters</i> , 2015 , 107, 233503	3.4	5
98	Environment-dependent photochromism of silver nanoparticles interfaced with metal-oxide films. <i>Applied Surface Science</i> , 2015 , 357, 2048-2054	6.7	5
97	Preparation and characterization of multifunctional Fe3O4/ZnO/SiO2 nanocomposites. <i>Journal of Alloys and Compounds</i> , 2012 , 535, 91-94	5.7	5
96	Origin of ultraviolet electroluminescence in n-ZnO/p-GaN and n-MgZnO/p-GaN heterojunction light-emitting diodes. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2013 , 210, 2751-2755	1.6	5
95	Amplified spontaneous emission from an Ag-backed red-fluorescent-dye-doped polymer film. <i>Applied Optics</i> , 2010 , 49, 315-9	0.2	5
94	Probing the visible luminescence mechanism in ZnO nanoparticles by band edge modulation. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 2185-9	1.3	5
93	Optical property of hexagonal nanocrystalline zno film on Si substrate prepared by plasma-enhanced CVD. <i>Journal of Luminescence</i> , 2007 , 122-123, 822-824	3.8	5
92	Optical properties of ZnO nanocrystals embedded in BaF2 film fabricated by magnetron sputtering. <i>Journal Physics D: Applied Physics</i> , 2007 , 40, 5598-5601	3	5

91	Photoluminescence properties of ZnO films grown on InP by thermally oxidizing metallic Zn films. Journal of Physics Condensed Matter, 2003 , 15, 1975-1981	1.8	5
90	Photo-dynamics of polarization holographic recording in spirooxazine-doped polymer films. <i>Materials Letters</i> , 2005 , 59, 1449-1452	3.3	5
89	An antimicrobial peptide-immobilized nanofiber mat with superior performances than the commercial silver-containing dressing. <i>Materials Science and Engineering C</i> , 2021 , 119, 111608	8.3	5
88	Improved near-UV electroluminescence of ZnO nanorod array LEDs by coupling with a graphene plasmon layer. <i>Nanophotonics</i> , 2019 , 8, 2203-2213	6.3	4
87	Individual single-crystal nanowires as electrodes for organic single-crystal nanodevices. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 9534-9539	7.1	4
86	Nonvolatile plasmonic holographic memory based on photo-driven ion migration. <i>Applied Optics</i> , 2017 , 56, 6942-6948	1.7	4
85	The role of DUV laser irradiation in the optical and electrical properties of indium zinc oxide films synthesized by self-combustion. <i>Journal of Alloys and Compounds</i> , 2019 , 806, 327-334	5.7	4
84	Low temperature preparation and characterization of (Ga1\(\mathbb{L}\)Znx)(N1\(\mathbb{D}\)Oy) alloy nanostructures using electrospun nanofibers as source materials. <i>Ceramics International</i> , 2014 , 40, 3425-3431	5.1	4
83	Visible laser-assisted reduction of plasmonic Ag nanoparticles with narrow-band optical absorption for colored holographic reconstruction. <i>Optics Express</i> , 2017 , 25, 31253-31262	3.3	4
82	Low-temperature, catalyst-free vapor\lambdalid growth of ultralong ZnO nanowires. <i>Materials Chemistry and Physics</i> , 2012 , 136, 455-459	4.4	4
81	Multiphonon resonant Raman scattering (MRRS) of semiconductor nanomaterials for biodetection. Journal of Nanoscience and Nanotechnology, 2011 , 11, 9357-67	1.3	4
80	Growth and optical properties of ZnO microwells by chemical vapor deposition method. <i>Physica B: Condensed Matter</i> , 2009 , 404, 315-319	2.8	4
79	One-Step Nonaqueous Synthesis of Pure Phase TiO2Nanocrystals from TiCl4in Butanol and Their Photocatalytic Properties. <i>Journal of Nanomaterials</i> , 2011 , 2011, 1-6	3.2	4
78	Effects of annealing on structural, optical and electrical properties of Al-doped ZnO thin films 2004 , 47, 588		4
77	A control on the photoluminescence properties in P-passivated nanocrystalline ZnO films. <i>Chemical Physics Letters</i> , 2004 , 397, 360-363	2.5	4
76	Compositional and structural studies of amorphous silicon-nitrogen alloys deposited at room temperature using a sputtering-type electron cyclotron resonance microwave plasma. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and</i>		4
75	Bi-photonic reduction of anisotropic Ag nanoparticles for color-tunable hologram reconstruction. Optics Express, 2019 , 27, 11991-11999	3.3	4
74	Natural Acidic Polysaccharide-Based Memristors for Transient Electronics: Highly Controllable Quantized Conductance for Integrated Memory and Nonvolatile Logic Applications <i>Advanced Materials</i> , 2021 , 33, e2104023	24	4

(2015-2020)

73	Cobweb-like, Ultrathin Porous Polymer Films for Ultrasensitive NO Detection. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 52992-53002	9.5	4
72	Flexible and transparent memristive synapse based on polyvinylpyrrolidone/N-doped carbon quantum dot nanocomposites for neuromorphic computing. <i>Nanoscale Advances</i> , 2021 , 3, 2623-2631	5.1	4
71	Facile preparation of flexible polyacrylonitrile/BiOCl/BiOI nanofibers via SILAR method for effective floating photocatalysis. <i>Journal of Sol-Gel Science and Technology</i> , 2021 , 97, 610-621	2.3	4
70	Construction of hierarchical hetero-structured TiO2 photoanodes for dye-sensitized solar energy conversion: Case study of anatase nanobranches on rutile nanorod arrays. <i>Chemical Physics</i> , 2019 , 522, 129-133	2.3	3
69	Enhanced Carrier-Exciton Interactions in Monolayer MoS under Applied Voltages. <i>ACS Applied Materials & ACS Applied & ACS Applie</i>	9.5	3
68	Spray-processed nanoporous BiVO4 photoanodes with high charge separation efficiency for oxygen evolution. <i>APL Materials</i> , 2020 , 8, 031112	5.7	3
67	Controllable preparation of three-dimensional porous WO3 with enhanced visible light photocatalytic activity via a freeze-drying method. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 9605-9612	2.1	3
66	Biphotonic holographic grating recordings for different polarization configurations in spirooxazine-doped polymers. <i>Applied Optics</i> , 2014 , 53, 5815-23	1.7	3
65	Characterization and optical transition in tb-doped 12CaO x 7Al2O3 powders. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 2125-30	1.3	3
64	Visible luminescence mechanism of ZnO nanoparticles synthesized by sol-gel method. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 9415-20	1.3	3
63	Effects of temperature and pressure on the structural and optical properties of ZnO films grown by pulsed laser deposition. <i>Science China Technological Sciences</i> , 2010 , 53, 317-321	3.5	3
62	Enhancing hologram memory via deposition of plasmonic nanocubes on orderly mesoporous titania. <i>Optics Express</i> , 2020 , 28, 13008-13018	3.3	3
61	Cellulose nanofibers electrospun from aqueous conditions. <i>Cellulose</i> , 2020 , 27, 8695-8708	5.5	3
60	A Single Nanobelt Transistor for Gas Identification: Using a Gas-Dielectric Strategy. <i>Sensors</i> , 2016 , 16,	3.8	3
59	Low surface energy interface-derived low-temperature recrystallization behavior of organic thin films for boosting carrier mobility. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 13778-13785	7.1	3
58	An infrared IgG immunoassay based on the use of a nanocomposite consisting of silica coated FeO superparticles. <i>Mikrochimica Acta</i> , 2019 , 186, 99	5.8	3
57	Effects of preparation parameters on the properties of the crosslinked pectin nanofiber mats. <i>Carbohydrate Polymers</i> , 2021 , 269, 118314	10.3	3
56	Size-controlled ambipolar graphene nanoribbon transistors by an all-dry mask method. <i>Synthetic Metals</i> , 2015 , 205, 6-10	3.6	2

55	Selective photo-oxidation induced bi-periodic plasmonic structures for high-density data storage. <i>Applied Optics</i> , 2017 , 56, 7892-7897	1.7	2
54	A Glucose Biosensor Based on Detecting Longitudinal Surface Plasmon Resonance of Gold Nanorods. <i>Journal of Nanoscience and Nanotechnology</i> , 2016 , 16, 6925-6929	1.3	2
53	Label-Free Detection of Bovine Serum Albumin Protein Based on SiO2/Au Nanoshells as Near-Infrared Surface-Enhanced Raman Spectroscopy Nanoprobe. <i>Journal of Nanoscience and Nanotechnology</i> , 2016 , 16, 7103-7109	1.3	2
52	Organic Single-Crystal Nanowire Transistor Fabricated by Glass Fiber Mask Method. <i>IEEE Transactions on Electron Devices</i> , 2016 , 63, 787-792	2.9	2
51	Ultrasensitive Charged Object Detection Based on Rubrene Crystal Sensor. <i>IEEE Transactions on Electron Devices</i> , 2019 , 66, 3139-3143	2.9	2
50	Vertical Bi2Se3 flake array as a Pt-free counter electrode for dye-sensitized solar cells. <i>RSC Advances</i> , 2017 , 7, 51958-51964	3.7	2
49	Effect of reset voltage polarity on the resistive switching region of unipolar memory. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2015 , 212, 2255-2261	1.6	2
48	Two-step vapor transport deposition of large-size bridge-like Bi2Se3 nanostructures. <i>CrystEngComm</i> , 2015 , 17, 8449-8456	3.3	2
47	Ultraviolet lasing action in ZnO nanosheets. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 6744	-7 .3	2
46	Photoluminescence of MgxZn1NO films grown on a sapphire substrate by a MOCVD technique. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2006 , 3, 3508-3511		2
45	Graphene-oxide/TiO nanocomposite films with electron-donors for multicolor holography. <i>Optics Express</i> , 2019 , 27, 1740-1749	3.3	2
44	Anchoring bismuth oxybromo-iodide solid solutions on flexible electrospun polyacrylonitrile nanofiber mats for floating photocatalysis. <i>Journal of Colloid and Interface Science</i> , 2021 , 608, 3178-317	18 9.3	2
43	Thermal-assisted electroforming enables performance improvement by suppressing the overshoot current in amorphous carbon-based electrochemical metallization memory. <i>Applied Physics Letters</i> , 2021 , 119, 143505	3.4	2
42	A coral-like hematite photoanode on a macroporous SnO2: Sb substrate for enhanced photoelectrochemical water oxidation. <i>Electrochimica Acta</i> , 2020 , 360, 137012	6.7	2
41	High switching uniformity and 50 fJ/bit energy consumption achieved in amorphous silicon-based memristive device with an AgInSbTe buffer layer. <i>Applied Physics Letters</i> , 2021 , 118, 263507	3.4	2
40	Crosslinked carboxymethyl starch nanofiber mats: Preparation, water resistance and exudates control ability. <i>European Polymer Journal</i> , 2021 , 154, 110568	5.2	2
39	Neutron irradiation-induced effects on the reliability performance of electrochemical metallization memory devices. <i>Journal of Semiconductors</i> , 2021 , 42, 014103	2.3	2
38	Self-Standing and Flexible Thermoelectric Nanofiber Mat of an n-Type Conjugated Polymer. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 3641-3647	4	2

(2022-2021)

37	Highly Stable Nonhydroxyl Antisolvent Polymer Dielectric: A New Strategy towards High-Performance Low-Temperature Solution-Processed Ultraflexible Organic Transistors for Skin-Inspired Electronics <i>Research</i> , 2021 , 2021, 9897353	7.8	2
36	Highly permeable WO3/CuWO4 heterostructure with 3D hierarchical porous structure for high-sensitive room-temperature visible-light driven gas sensor. <i>Sensors and Actuators B: Chemical</i> , 2022 , 365, 131926	8.5	2
35	Effect of electrode design on crosstalk between neighboring organic field-effect transistors based on one single crystal. <i>Applied Physics Express</i> , 2018 , 11, 036502	2.4	1
34	Photocatalytic film of BiOCl honeycomb array from anodic aluminium oxide template. <i>Materials Technology</i> , 2015 , 30, A84-A88	2.1	1
33	Multiplexed holographic gratings recorded by 405nm laser in polymer film containing spirooxazines 2012 ,		1
32	Microphotoluminescence investigation on single ZnO microrods with different morphologies. Journal of Applied Physics, 2009 , 105, 123109	2.5	1
31	Effect of nitrogenized Si(1 1 1) substrates on the quality of ZnO films grown by pulsed laser deposition. <i>Journal Physics D: Applied Physics</i> , 2009 , 42, 035307	3	1
30	Microstructure and optical properties of Eu-doped Mg x Zn1☑ O hexagonal nanocrystals. <i>Science China Technological Sciences</i> , 2010 , 53, 761-765	3.5	1
29	A Thermally Activated Exciton Exciton Collision Process in ZnO Microrods. <i>Chinese Physics Letters</i> , 2004 , 21, 1640-1643	1.8	1
28	Structure and photoluminescence of Mn-passivated nanocrystalline ZnO:S thin films. <i>Physica B: Condensed Matter</i> , 2005 , 367, 223-228	2.8	1
27	Recent Advances in Magnetic Upconversion Nanocomposites for Bioapplications. <i>Current Pharmaceutical Design</i> , 2019 , 25, 2007-2015	3.3	1
26	Analytical modeling of electrochemical metallization memory device with dual-layer structure of Ag/AgInSbTe/amorphous C/Pt. <i>Semiconductor Science and Technology</i> , 2020 , 35, 02LT01	1.8	1
25	Self-Powered Memristive Systems for Storage and Neuromorphic Computing. <i>Frontiers in Neuroscience</i> , 2021 , 15, 662457	5.1	1
24	Selection of Insulating Elastomers for High-Performance Intrinsically Stretchable Transistors. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 1458-1467	4	1
23	Nondestructive readout of holographic memory in Ag/TiO2 heterojunction via carbon-dots and hydrogel co-modification. <i>Applied Physics Letters</i> , 2021 , 118, 141601	3.4	1
22	Ternary NiTiO3@g-C3N4Au nanofibers with a synergistic Z-scheme core@shell interface and dispersive Schottky contact surface for enhanced solar photocatalytic activity. <i>Materials Chemistry Frontiers</i> , 2021, 5, 2730-2741	7.8	1
21	Recent progress in optoelectronic memristive devices for in-sensor computing. Wuli Xuebao/Acta Physica Sinica, 2022,	0.6	1
20	Pavlovian conditioning achieved via one-transistor/one-resistor memristive synapse. <i>Applied Physics Letters</i> , 2022 , 120, 133503	3.4	1

Highly Stable Transparent Electrodes Made from Copper Nanotrough Coated with AZO/Al2O3.

a-InGaZnO/a-InGaZnO:N Channel. Journal of Nanoscience and Nanotechnology, 2016, 16, 3659-63

Improved Mobility and Bias Stability of Thin Film Transistors Using the Double-Layer

Journal of Nanoscience and Nanotechnology, 2016, 16, 3811-5

1.3

1.3

Conformable \${n}\$ -Channel Organic Phototransistors With Enhanced Photosensitivity and Broadened Response Range via Insertion of an Alq3 Layer. *IEEE Electron Device Letters*, **2018**, 1-1

4.4