## Yulia Y Enakieva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/652445/publications.pdf Version: 2024-02-01



VIII IA Y ENAKIEVA

| #  | Article                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Unusual Formation of a Stable 2D Copper Porphyrin Network. Inorganic Chemistry, 2013, 52, 999-1008.                                                                                                                                                                          | 4.0  | 60        |
| 2  | Synthesis of <i>meso</i> -Polyphosphorylporphyrins and Example of Self-Assembling. Organic Letters, 2009, 11, 3842-3845.                                                                                                                                                     | 4.6  | 49        |
| 3  | Electrochemical and Spectroelectrochemical Studies of Diphosphorylated Metalloporphyrins.<br>Generation of a Phlorin Anion Product. Inorganic Chemistry, 2015, 54, 3501-3512.                                                                                                | 4.0  | 46        |
| 4  | Electrochemical and spectroscopic studies of poly(diethoxyphosphoryl)porphyrins. Journal of Electroanalytical Chemistry, 2011, 656, 61-71.                                                                                                                                   | 3.8  | 40        |
| 5  | Supramolecular Assembly of Organophosphonate Diesters Using Paddle-Wheel Complexes: First<br>Examples in Porphyrin Series. Crystal Growth and Design, 2014, 14, 5976-5984.                                                                                                   | 3.0  | 36        |
| 6  | Solvent-induced supramolecular assemblies of crown-substituted ruthenium phthalocyaninate:<br>morphology of assemblies and non-linear optical properties. Journal of Porphyrins and<br>Phthalocyanines, 2009, 13, 92-98.                                                     | 0.8  | 34        |
| 7  | Synthesis and Selfâ€Organization of Zinc β <i>â€</i> (Dialkoxyphosphoryl)porphyrins in the Solid State and in Solution. Chemistry - A European Journal, 2012, 18, 15092-15104.                                                                                               | 3.3  | 31        |
| 8  | Layer-by-layer assembly of porphyrin-based metal–organic frameworks on solids decorated with graphene oxide. New Journal of Chemistry, 2017, 41, 948-957.                                                                                                                    | 2.8  | 31        |
| 9  | Synthesis and structure of the (R4Pc)Ru(TED)2 complex, where R4Pc2â^' is the<br>tetra-15-crown-5-phthalocyaninate dianion and TED is triethylenediamine. Mendeleev Communications,<br>2004, 14, 193-194.                                                                     | 1.6  | 28        |
| 10 | Insights into the crystal packing of phosphorylporphyrins based on the topology of their intermolecular interaction energies. CrystEngComm, 2014, 16, 10428-10438.                                                                                                           | 2.6  | 28        |
| 11 | Highly Protonâ€Conductive Zinc Metalâ€Organic Framework Based On Nickel(II) Porphyrinylphosphonate.<br>Chemistry - A European Journal, 2019, 25, 10552-10556.                                                                                                                | 3.3  | 28        |
| 12 | Gallium(III) and Indium(III) Complexes with <i>meso</i> -Monophosphorylated Porphyrins: Synthesis and<br>Structure. A First Example of Dimers Formed by the Self-Assembly of<br><i>meso</i> -Porphyrinylphosphonic Acid Monoester. Inorganic Chemistry, 2017, 56, 3055-3070. | 4.0  | 22        |
| 13 | Understanding Self-Assembly of Porphyrin-Based SURMOFs: How Layered Minerals Can Be Useful.<br>Langmuir, 2018, 34, 5184-5192.                                                                                                                                                | 3.5  | 21        |
| 14 | Intercalation of Porphyrinâ€Based SURMOF in Layered Eu(III) Hydroxide: An Approach Toward Symbimetic<br>Hybrid Materials. Advanced Functional Materials, 2020, 30, 2000681.                                                                                                  | 14.9 | 19        |
| 15 | Electrochemical and spectroelectrochemical studies of β-phosphorylated <font>Zn</font><br>porphyrins. Journal of Porphyrins and Phthalocyanines, 2013, 17, 1035-1045.                                                                                                        | 0.8  | 18        |
| 16 | General and Scalable Approach to A <sub>2</sub> B―and A <sub>2</sub> BCâ€Type Porphyrin Phosphonate<br>Diesters. European Journal of Organic Chemistry, 2016, 2016, 4881-4892.                                                                                               | 2.4  | 16        |
| 17 | Porphyrinylphosphonateâ€Based Metal–Organic Framework: Tuning Proton Conductivity by Ligand<br>Design. Chemistry - A European Journal, 2021, 27, 1598-1602.                                                                                                                  | 3.3  | 16        |
| 18 | Proton conductivity as a function of the metal center in porphyrinylphosphonate-based MOFs. Dalton<br>Transactions, 2021, 50, 6549-6560.                                                                                                                                     | 3.3  | 13        |

Yulia Y Enakieva

| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Monolayers and Langmuir-Blodgett films of crown-substituted phthalocyanines. Russian Chemical<br>Bulletin, 2004, 53, 2532-2541.                                                                                                                                     | 1.5 | 12        |
| 20 | Nonlinear optical properties of systems based on ruthenium(II) tetra-15-crown-5-phthalocyaninate.<br>High Energy Chemistry, 2008, 42, 297-304.                                                                                                                      | 0.9 | 12        |
| 21 | Effect of metalation-demetalation reactions on the assembly and properties of 2D supramolecular arrays of tetrapyridylporphyrin and its Zn(II)-complex. Surface Science, 2017, 660, 39-46.                                                                          | 1.9 | 12        |
| 22 | Ruthenium(ii) complexes with tetra-15-crown-5-phthalocyanine: synthesis and spectroscopic investigation. Russian Chemical Bulletin, 2004, 53, 74-79.                                                                                                                | 1.5 | 11        |
| 23 | Infrared Photorefractive Composites Based on Supramolecular Ensembles of Ruthenium(II)<br>Tetra-15-crown-5-phthalocyaninate. Doklady Physical Chemistry, 2005, 403, 137-141.                                                                                        | 0.9 | 11        |
| 24 | Supramolecular Architectures Based on Phosphonic Acid Diesters. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 831-836.                                                                                                                        | 1.6 | 11        |
| 25 | Photorefractive IR-spectrum composites prepared from polyimide and ruthenium(II)<br>tetra-15-crown-5-phthalocyaninate with axially coordinated triethylenediamine molecules. Russian<br>Journal of Physical Chemistry A, 2006, 80, 453-460.                         | 0.6 | 10        |
| 26 | Photorefractive IR-range composites on the basis of poly(vinyl carbazole) and ruthenium (II)<br>tetra-15-crown-5-phthalocyanines. Russian Journal of Physical Chemistry A, 2007, 81, 982-989.                                                                       | 0.6 | 10        |
| 27 | The Effect of Phosphoryl–Substituted Porphyrins on Mobility of Charge Carriers in P3HT Polymer<br>Photoconductor. Protection of Metals and Physical Chemistry of Surfaces, 2018, 54, 1076-1080.                                                                     | 1.1 | 10        |
| 28 | Electrochemical, Spectroelectrochemical, and Structural Studies of Mono- and Diphosphorylated<br>Zinc Porphyrins and Their Self-Assemblies. Inorganic Chemistry, 2019, 58, 4665-4678.                                                                               | 4.0 | 10        |
| 29 | Photorefractive polymer composites based on ruthenium (II) tetra-15-crown-5-phthalocyanate axially coordinating ethylisonicotinate molecules photosensitive in telecommunication range. Protection of Metals and Physical Chemistry of Surfaces, 2009, 45, 535-542. | 1.1 | 9         |
| 30 | Structure of supramolecular assemblies of ruthenium(II) complexes and nonlinear optical and photorefractive properties of polymer composites on their basis. High Energy Chemistry, 2009, 43, 543-551.                                                              | 0.9 | 8         |
| 31 | Cation-promoted supramolecular assembly of bivalent metal tetra-15-crown-5-phthalocyaninates:<br>Controlling the architecture of supramolecular aggregates. Protection of Metals and Physical<br>Chemistry of Surfaces, 2011, 47, 441-446.                          | 1.1 | 8         |
| 32 | Photoelectric and photorefractive properties of composites based on poly(vinylcarbazole) and<br>ruthenium(II) tetra-15-crown-5-phthalocyanine with axially coordinated pyrazine molecules. High<br>Energy Chemistry, 2012, 46, 331-335.                             | 0.9 | 7         |
| 33 | Synthesis of ( <i>trans</i> â€A <sub>2</sub> )BCâ€Type Porphyrins with Acceptor Diethoxyphosphoryl and<br>Various Donor Groups and their Assembling in the Solid State and at Interfaces. European Journal of<br>Organic Chemistry, 2019, 2019, 3146-3162.          | 2.4 | 7         |
| 34 | Layer-by-Layer Assembly of Metal-Organic Frameworks Based on Carboxylated Perylene on Template<br>Monolayers of Graphene Oxide. Colloid Journal, 2018, 80, 684-690.                                                                                                 | 1.3 | 6         |
| 35 | Coordination self-assembly through weak interactions in <i>meso</i> -dialkoxyphosphoryl-substituted zinc porphyrinates. Dalton Transactions, 2019, 48, 5372-5383.                                                                                                   | 3.3 | 5         |
| 36 | Spin Crossover in Nickel(II) Tetraphenylporphyrinate via Forced Axial Coordination at the Air/Water<br>Interface. Molecules, 2021, 26, 4155.                                                                                                                        | 3.8 | 5         |

Yulia Y Enakieva

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Synthesis of meso-substituted porphyrins as precursors in creating highly ordered<br>electroluminescent polymer materials. Protection of Metals and Physical Chemistry of Surfaces, 2009,<br>45, 529-534. | 1.1 | 4         |
| 38 | Bilayer Porphyrin-Graphene Templates for Self-Assembly of Metal-Organic Frameworks on the Surface.<br>Macroheterocycles, 2017, 10, 496-504.                                                               | 0.5 | 4         |
| 39 | Electrochemical behavior of complex based on ruthenium(II) phthalocyaninate. Russian Journal of Electrochemistry, 2007, 43, 1350-1357.                                                                    | 0.9 | 3         |
| 40 | The influence of a solvent on the aggregation of ruthenium(II) tetra-15-crown-5-phthalocyaninate.<br>Russian Journal of Physical Chemistry A, 2009, 83, 1907-1912.                                        | 0.6 | 3         |
| 41 | Thianaphthene-Annulated Tetrapyrazinoporphyrazines. Macroheterocycles, 2010, 3, 48-50.                                                                                                                    | 0.5 | 3         |
| 42 | Synthesis of porphyrin-bis(polyazamacrocycle) triads <i>via</i> Suzuki coupling reaction. Journal of<br>Porphyrins and Phthalocyanines, 2014, 18, 35-48.                                                  | 0.8 | 2         |
| 43 | Effect of Transition Metal Cations on Assembly of Highly Ordered 2D Multiporphyrin Arrays on Liquid and Solid Substrates. Macroheterocycles, 2016, 9, 378-386.                                            | 0.5 | 2         |