Emiliana Fabbri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6524271/publications.pdf

Version: 2024-02-01

109 10,735 52
papers citations h-index

52 102 index g-index

114
all docs docs

114 114 docs citations times ranked

9818 citing authors

#	Article	IF	CITATIONS
1	Direct evidence of cobalt oxyhydroxide formation on a La _{0.2} Sr _{0.8} CoO ₃ perovskite water splitting catalyst. Journal of Materials Chemistry A, 2022, 10, 2434-2444.	5. 2	12
2	Synergistic effects in oxygen evolution activity of mixed iridium-ruthenium pyrochlores. Electrochimica Acta, 2021, 366, 137327.	2.6	17
3	Oxygen evolution reaction activity and underlying mechanism of perovskite electrocatalysts at different pH. Materials Advances, 2021, 2, 345-355.	2.6	42
4	Perovskite Oxide Based Electrodes for the Oxygen Reduction and Evolution Reactions: The Underlying Mechanism. ACS Catalysis, 2021, 11, 3094-3114.	5.5	115
5	Correlation between Oxygen Vacancies and Oxygen Evolution Reaction Activity for a Model Electrode: PrBaCo ₂ O _{5+<i>l^(</i>)} . Angewandte Chemie - International Edition, 2021, 60, 14609-14619.	7.2	54
6	Correlation between Oxygen Vacancies and Oxygen Evolution Reaction Activity for a Model Electrode: PrBaCo 2 O $5+\hat{l}$. Angewandte Chemie, 2021, 133, 14730-14740.	1.6	3
7	Enlightening the journey of metal-organic framework (derived) catalysts during the oxygen evolution reaction in alkaline media via operando X-ray absorption spectroscopy. Current Opinion in Electrochemistry, 2021, 30, 100845.	2.5	5
8	Tuning the Co Oxidation State in Ba0.5Sr0.5Co0.8Fe0.2O3-Î [°] by Flame Spray Synthesis Towards High Oxygen Evolution Reaction Activity. Catalysts, 2020, 10, 984.	1.6	11
9	Probing the solid–liquid interface with tender x rays: A new ambient-pressure x-ray photoelectron spectroscopy endstation at the Swiss Light Source. Review of Scientific Instruments, 2020, 91, 023103.	0.6	45
10	Co-electrolysis of CO2 and H2O: From electrode reactions to cell-level development. Current Opinion in Electrochemistry, 2020, 23, 89-95.	2.5	32
11	Surface Segregation Acts as Surface Engineering for the Oxygen Evolution Reaction on Perovskite Oxides in Alkaline Media. Chemistry of Materials, 2020, 32, 5256-5263.	3.2	16
12	<i>Operando</i> X-ray characterization of high surface area iridium oxides to decouple their activity losses for the oxygen evolution reaction. Energy and Environmental Science, 2019, 12, 3038-3052.	15.6	90
13	Co/Fe Oxyhydroxides Supported on Perovskite Oxides as Oxygen Evolution Reaction Catalyst Systems. ACS Applied Materials & Diterfaces, 2019, 11, 34787-34795.	4.0	43
14	Design and Synthesis of Ir/Ru Pyrochlore Catalysts for the Oxygen Evolution Reaction Based on Their Bulk Thermodynamic Properties. ACS Applied Materials & Samp; Interfaces, 2019, 11, 37748-37760.	4.0	61
15	Fe-Doping in Double Perovskite PrBaCo2(1-x)Fe2xO6-Î: Insights into Structural and Electronic Effects to Enhance Oxygen Evolution Catalyst Stability. Catalysts, 2019, 9, 263.	1.6	25
16	Functional Role of Fe-Doping in Co-Based Perovskite Oxide Catalysts for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2019, 141, 5231-5240.	6.6	250
17	Interface Effects on the Ionic Conductivity of Doped Ceria–Yttria-Stabilized Zirconia Heterostructures. ACS Applied Materials & Interfaces, 2018, 10, 14160-14169.	4.0	22
18	Impact of Support Physicochemical Properties on the CO Oxidation and the Oxygen Reduction Reaction Activity of Pt/SnO ₂ Electrocatalysts. Journal of Physical Chemistry C, 2018, 122, 4739-4746.	1.5	18

#	Article	IF	CITATIONS
19	Influence of Carbon Material Properties on Activity and Stability of the Negative Electrode in Vanadium Redox Flow Batteries: A Model Electrode Study. ACS Applied Energy Materials, $2018, 1, 1166-1174$.	2.5	25
20	Facile deposition of Pt nanoparticles on Sb-doped SnO ₂ support with outstanding active surface area for the oxygen reduction reaction. Catalysis Science and Technology, 2018, 8, 2672-2685.	2.1	25
21	Solid oxide fuel cells with proton-conducting La0.99Ca0.01NbO4 electrolyte. Electrochimica Acta, 2018, 260, 748-754.	2.6	64
22	<i>Operando</i> X-ray absorption investigations into the role of Fe in the electrochemical stability and oxygen evolution activity of Ni _{1â^x} Fe _x O _y nanoparticles. Journal of Materials Chemistry A, 2018, 6, 24534-24549.	5.2	45
23	Investigation of Hydrogen-Like Muonium States in Nb-Doped SnO ₂ Films., 2018,,.		1
24	Highly Active Nanoperovskite Catalysts for Oxygen Evolution Reaction: Insights into Activity and Stability of Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{2+Î} and PrBaCo ₂ O _{5+Î} . Advanced Functional Materials, 2018, 28, 1804355.	7.8	63
25	Oxygen Evolution Reaction on Perovskites: A Multieffect Descriptor Study Combining Experimental and Theoretical Methods. ACS Catalysis, 2018, 8, 9567-9578.	5. 5	98
26	Oxygen Evolution Reactionâ€"The Enigma in Water Electrolysis. ACS Catalysis, 2018, 8, 9765-9774.	5 . 5	345
27	Silicone Nanofilament-Supported Mixed Nickel-Metal Oxides for Alkaline Water Electrolysis. Journal of the Electrochemical Society, 2017, 164, F203-F208.	1.3	7
28	IrO ₂ -TiO ₂ : A High-Surface-Area, Active, and Stable Electrocatalyst for the Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 2346-2352.	5 . 5	264
29	Stabilization of Pt Nanoparticles Due to Electrochemical Transistor Switching of Oxide Support Conductivity. Chemistry of Materials, 2017, 29, 2831-2843.	3.2	29
30	Effect of Dopant–Host Ionic Radii Mismatch on Acceptor-Doped Barium Zirconate Microstructure and Proton Conductivity. Journal of Physical Chemistry C, 2017, 121, 9739-9747.	1.5	95
31	Performance of Different Carbon Electrode Materials: Insights into Stability and Degradation under Real Vanadium Redox Flow Battery Operating Conditions. Journal of the Electrochemical Society, 2017, 164, A1608-A1615.	1.3	57
32	Highly Active and Stable Iridium Pyrochlores for Oxygen Evolution Reaction. Chemistry of Materials, 2017, 29, 5182-5191.	3.2	172
33	Unraveling Thermodynamics, Stability, and Oxygen Evolution Activity of Strontium Ruthenium Perovskite Oxide. ACS Catalysis, 2017, 7, 3245-3256.	5. 5	113
34	LaTiO _x N _y Thin Film Model Systems for Photocatalytic Water Splitting: Physicochemical Evolution of the Solid–Liquid Interface and the Role of the Crystallographic Orientation. Advanced Functional Materials, 2017, 27, 1605690.	7.8	38
35	Influence of surface oxygen groups on V(II) oxidation reaction kinetics. Electrochemistry Communications, 2017, 75, 13-16.	2.3	20
36	Operando X-ray absorption spectroscopy: A powerful tool toward water splitting catalyst development. Current Opinion in Electrochemistry, 2017, 5, 20-26.	2.5	69

#	Article	IF	Citations
37	Boosting Pt oxygen reduction reaction activity by tuning the tin oxide support. Electrochemistry Communications, 2017, 83, 90-95.	2.3	19
38	Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nature Materials, 2017, 16, 925-931.	13.3	696
39	Tuning the Surface Electrochemistry by Strained Epitaxial Pt Thin Film Model Electrodes Prepared by Pulsed Laser Deposition. Advanced Materials Interfaces, 2016, 3, 1600222.	1.9	15
40	The Effect of Platinum Loading and Surface Morphology on Oxygen Reduction Activity. Electrocatalysis, 2016, 7, 287-296.	1.5	106
41	Vanadium (V) reduction reaction on modified glassy carbon electrodes – Role of oxygen functionalities and microstructure. Carbon, 2016, 109, 472-478.	5.4	33
42	Investigating the Role of Strain toward the Oxygen Reduction Activity on Model Thin Film Pt Catalysts. ACS Catalysis, 2016, 6, 7566-7576.	5.5	56
43	Electrochemical Flow-Cell Setup for In Situ X-ray Investigations. Journal of the Electrochemical Society, 2016, 163, H906-H912.	1.3	71
44	Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS. Chemistry of Materials, 2016, 28, 6591-6604.	3.2	347
45	Electrochemical Flow-Cell Setup for In Situ X-ray Investigations. Journal of the Electrochemical Society, 2016, 163, H913-H920.	1.3	10
46	Interfacial effects on the catalysis of the hydrogen evolution, oxygen evolution and CO2-reduction reactions for (co-)electrolyzer development. Nano Energy, 2016, 29, 4-28.	8.2	104
47	Particle-Support Interferences in Small-Angle X-Ray Scattering from Supported-Catalyst Materials. Physical Review Applied, 2015, 3, .	1.5	19
48	Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Scientific Reports, 2015, 5, 12167.	1.6	309
49	Superior Bifunctional Electrocatalytic Activity of Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â€f} /Carbon Composite Electrodes: Insight into the Local Electronic Structure. Advanced Energy Materials, 2015, 5, 1402033.	10.2	102
50	Silicone Nanofilament Supported Nickel Oxide: A New Concept for Oxygen Evolution Catalysts in Water Electrolyzers. Advanced Materials Interfaces, 2015, 2, 1500216.	1.9	10
51	Electrocatalysis of Perovskites: The Influence of Carbon on the Oxygen Evolution Activity. Journal of the Electrochemical Society, 2015, 162, F579-F586.	1.3	88
52	Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering. Science and Technology of Advanced Materials, 2015, 16, 015001.	2.8	16
53	Oxygen Evolution Reaction on La _{1â€"<i>>x</i>} Sr _{<i>x</i>} CoO ₃ Perovskites: A Combined Experimental and Theoretical Study of Their Structural, Electronic, and Electrochemical Properties. Chemistry of Materials, 2015, 27, 7662-7672.	3.2	259
54	Advanced Cathode Materials for Polymer Electrolyte Fuel Cells Based on Pt/ Metal Oxides: From Model Electrodes to Catalyst Systems. Chimia, 2014, 68, 217.	0.3	17

#	Article	IF	CITATIONS
55	Scalable Oxygenâ€lon Transport Kinetics in Metalâ€Oxide Films: Impact of Thermally Induced Lattice Compaction in Acceptor Doped Ceria Films. Advanced Functional Materials, 2014, 24, 1562-1574.	7.8	65
56	The Effect of Platinum Nanoparticle Distribution on Oxygen Electroreduction Activity and Selectivity. ChemCatChem, 2014, 6, 1410-1418.	1.8	20
57	Low-temperature solid-oxide fuel cells based on proton-conducting electrolytes. MRS Bulletin, 2014, 39, 792-797.	1.7	28
58	(Invited) Unraveling the Oxygen Reduction Reaction Mechanism and Activity of d-Band Perovskite Electrocatalysts for Low Temperature Alkaline Fuel Cells. ECS Transactions, 2014, 64, 1081-1093.	0.3	13
59	Understanding the Influence of Carbon on the Oxygen Reduction and Evolution Activities of BSCF/Carbon Composite Electrodes in Alkaline Electrolyte. ECS Transactions, 2014, 58, 9-18.	0.3	26
60	Catalyzed SnO ₂ Thin Films: Theoretical and Experimental Insights into Fabrication and Electrocatalytic Properties. Journal of Physical Chemistry C, 2014, 118, 11292-11302.	1.5	35
61	Pt nanoparticles supported on Sb-doped SnO ₂ porous structures: developments and issues. Physical Chemistry Chemical Physics, 2014, 16, 13672-13681.	1.3	78
62	Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catalysis Science and Technology, 2014, 4, 3800-3821.	2.1	1,006
63	Composite Electrode Boosts the Activity of Ba _{0.5} Sr _{0.5} Perovskite and Carbon toward Oxygen Reduction in Alkaline Media. ACS Catalysis, 2014, 4, 1061-1070.	5.5	111
64	Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â€Î} Perovskite Activity towards the Oxygen Reduction Reaction in Alkaline Media. ChemElectroChem, 2014, 1, 338-342.	1.7	39
65	Determination of the Electrochemically Active Surface Area of Metal-Oxide Supported Platinum Catalyst. Journal of the Electrochemical Society, 2014, 161, H121-H128.	1.3	140
66	Growth mechanisms of ceria- and zirconia-based epitaxial thin films and hetero-structures grown by pulsed laser deposition. Materials for Renewable and Sustainable Energy, 2013, 2, 1.	1.5	18
67	Strontium and iron-doped barium cobaltite prepared by solution combustion synthesis: exploring a mixed-fuel approach for tailored intermediate temperature solid oxide fuel cell cathode materials. Materials for Renewable and Sustainable Energy, 2013, 2, 1.	1.5	36
68	Iridium-Titanium Oxide as Support for Pt Catalyst in PEFC Cathodes. ECS Transactions, 2013, 58, 1835-1841.	0.3	10
69	Durable Oxide-Based Catalysts for Application as Cathode Materials in Polymer Electrolyte Fuel Cells (PEFCs). ECS Transactions, 2013, 50, 9-17.	0.3	12
70	Tensile Lattice Distortion Does Not Affect Oxygen Transport in Yttria-Stabilized Zirconia–CeO ₂ Heterointerfaces. ACS Nano, 2012, 6, 10524-10534.	7.3	84
71	Room-Temperature Giant Persistent Photoconductivity in SrTiO ₃ /LaAlO ₃ Heterostructures. ACS Nano, 2012, 6, 1278-1283.	7.3	141
72	Electrochemical Properties and Intermediateâ€Temperature Fuel Cell Performance of Dense Yttriumâ€Doped Barium Zirconate with Calcium Addition. Journal of the American Ceramic Society, 2012, 95, 627-635.	1.9	81

#	Article	IF	CITATIONS
73	Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs). Electrochemistry Communications, 2012, 16, 37-40.	2.3	91
74	Tailoring phase stability and electrical conductivity of Sr0.02La0.98Nb1–xTaxO4 for intermediate temperature fuel cell proton conducting electrolytes. Solid State Ionics, 2012, 216, 6-10.	1.3	11
75	Novel Ba0.5Sr0.5(Co0.8Fe0.2)1 \hat{a} °xTixO3 \hat{a} ° \hat{l} ° (x=0, 0.05, and 0.1) cathode materials for proton-conducting solid oxide fuel cells. Solid State Ionics, 2012, 214, 1-5.	1.3	32
76	Towards the Next Generation of Solid Oxide Fuel Cells Operating Below 600 °C with Chemically Stable Protonâ€Conducting Electrolytes. Advanced Materials, 2012, 24, 195-208.	11.1	451
77	High-performance composite cathodes with tailored mixed conductivity for intermediate temperature solid oxide fuel cells using proton conducting electrolytes. Energy and Environmental Science, 2011, 4, 4984.	15.6	147
78	Electrode tailoring improves the intermediate temperature performance of solid oxide fuel cells based on a Y and Pr co-doped barium zirconate proton conducting electrolyte. RSC Advances, 2011, 1, 1183.	1.7	31
79	A novel ionic diffusion strategy to fabricate high-performance anode-supported solid oxidefuel cells (SOFCs) with proton-conducting Y-doped BaZrO ₃ films. Energy and Environmental Science, 2011, 4, 409-412.	15.6	83
80	Lowering grain boundary resistance of BaZr _{0.8} Y _{0.2} O _{3â^î^(} with LiNO ₃ sintering-aid improves proton conductivity for fuel cell operation. Physical Chemistry Chemical Physics, 2011, 13, 7692-7700.	1.3	121
81	Sinteractive anodic powders improve densification and electrochemical properties of BaZr0.8Y0.2O3â^Î electrolyte films for anode-supported solid oxide fuel cells. Energy and Environmental Science, 2011, 4, 1352.	15.6	118
82	Pulsed Laser Deposition of Superlattices Based on Ceria and Zirconia. ECS Transactions, 2011, 35, 1125-1130.	0.3	3
83	BaZr0.8Y0.2O3â^Î-NiO Composite Anodic Powders for Proton-Conducting SOFCs Prepared by a Combustion Method. Journal of the Electrochemical Society, 2011, 158, B797.	1.3	59
84	Sinteractivity, proton conductivity and chemical stability of BaZr0.7In0.3O3-δ for solid oxide fuel cells (SOFCs). Solid State Ionics, 2011, 196, 59-64.	1.3	66
85	Tailoring mixed proton-electronic conductivity of BaZrO3 by Y and Pr co-doping for cathode application in protonic SOFCs. Solid State Ionics, 2011, 202, 30-35.	1.3	65
86	Chemically Stable Pr and Y Coâ€Doped Barium Zirconate Electrolytes with High Proton Conductivity for Intermediateâ€Temperature Solid Oxide Fuel Cells. Advanced Functional Materials, 2011, 21, 158-166.	7.8	203
87	Soft Chemistry Routes for the Synthesis of Sr0.02La0.98Nb0.6Ta0.4O4 Proton Conductor. Journal of the Electrochemical Society, 2011, 158, B1485.	1.3	1
88	Soft Chemistry Routes for the Synthesis of Sr0.02La0.98Nb0.6Ta0.4O4 Proton Conductor. ECS Transactions, 2011, 35, 1235-1241.	0.3	0
89	Exploring Mixed Protonic/Electronic Conducting Oxides as Cathode Materials for Intermediate Temperature SOFCs Based on Proton Conducting Electrolytes. ECS Transactions, 2011, 35, 2305-2311.	0.3	2
90	Performance of Solid Oxide Fuel Cells with In-Doped BaZrO3 Electrolyte Films on Different Anode Substrates. ECS Transactions, 2011, 35, 797-804.	0.3	0

#	Article	IF	Citations
91	Does the increase in Y-dopant concentration improve the proton conductivity of BaZrlâ°'xYxO3â^'δ fuel cell electrolytes?. Solid State Ionics, 2010, 181, 1043-1051.	1.3	173
92	Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance. Electrochemistry Communications, 2010, 12, 977-980.	2.3	107
93	High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition. Nature Materials, 2010, 9, 846-852.	13.3	472
94	lonic conductivity in oxide heterostructures: the role of interfaces. Science and Technology of Advanced Materials, 2010, 11, 054503.	2.8	137
95	Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells. Science and Technology of Advanced Materials, 2010, 11, 044301.	2.8	116
96	Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chemical Society Reviews, 2010, 39, 4355.	18.7	731
97	A novel single chamber solid oxide fuel cell based on chemically stable thin films of Y-doped BaZrO3 proton conducting electrolyte. Energy and Environmental Science, 2010, 3, 618.	15.6	16
98	Exploring Highly Yttrium Doped Barium Zirconate Proton Conductor Electrolytes for Application in Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). ECS Transactions, 2009, 25, 1745-1752.	0.3	2
99	Single Chamber Solid Oxide Fuel Cells (SC-SOFCs) based on a Proton Conducting Electrolyte. ECS Transactions, 2009, 25, 1001-1006.	0.3	1
100	Composite Cathodes for Proton Conducting Electrolytes. Fuel Cells, 2009, 9, 128-138.	1.5	113
101	Mixed Protonic/Electronic Conductor Cathodes for Intermediate Temperature SOFCs Based on Proton Conducting Electrolytes. Journal of the Electrochemical Society, 2009, 156, B38.	1.3	48
102	Tailoring the chemical stability of Ba(Ce0.8â^'xZrx)Y0.2O3â^'Î^ protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). Solid State Ionics, 2008, 179, 558-564.	1.3	454
103	Design of BaZr _{0.8} Y _{0.2} O _{3–δ} Protonic Conductor to Improve the Electrochemical Performance in Intermediate Temperature Solid Oxide Fuel Cells (ITâ€SOFCs). Fuel Cells, 2008, 8, 69-76.	1.5	88
104	Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). Energy and Environmental Science, 2008, 1, 355.	15.6	98
105	BaZrxY1-xO3-d and BaCe1-x-zZrxYzO3-d Proton Conductors For Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). ECS Transactions, 2007, 7, 2337-2342.	0.3	7
106	BaCe1-x-yZrxYyO3-d Protonic Conductor for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). ECS Transactions, 2007, 6, 23-28.	0.3	1
107	Composite Ormosil/Nafion Membranes as Electrolytes for Direct Methanol Fuel Cells. Journal of the Electrochemical Society, 2007, 154, B1148.	1.3	19
108	Synthesis and Characterization of BaZr0.8Y0.2O3 Protonic Conductor for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). Materials Research Society Symposia Proceedings, 2006, 972, 1.	0.1	0

#	Article	lF	CITATIONS
109	Improving the Performance of High Temperature Protonic Conductor (HTPC) Electrolytes for Solid Oxide Fuel Cell (SOFC) Applications. Key Engineering Materials, 0, 421-422, 336-339.	0.4	3