Sebastian P Schwaminger

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6523960/sebastian-p-schwaminger-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

45
papers

752
citations

16
h-index

9-index

47
ext. papers

994
ext. citations

4.4
avg, IF

L-index

#	Paper	IF	Citations
45	Direct capture and selective elution of a secreted polyglutamate-tagged nanobody using bare magnetic nanoparticles <i>Biotechnology Journal</i> , 2022 , e2100577	5.6	O
44	Current practices with commercial scale bovine lactoferrin production and alternative approaches. <i>International Dairy Journal</i> , 2021 , 126, 105263	3.5	1
43	Calcium Oxalate Crystallization: Influence of pH, Energy Input, and Supersaturation Ratio on the Synthesis of Artificial Kidney Stones. <i>ACS Omega</i> , 2021 , 6, 26566-26574	3.9	3
42	Magnetically Induced Aggregation of Iron Oxide Nanoparticles for Carrier Flotation Strategies. <i>ACS Applied Materials & Applied & Applie</i>	9.5	5
41	Bare Iron Oxide Nanoparticles as Drug Delivery Carrier for the Short Cationic Peptide Lasioglossin. <i>Pharmaceuticals</i> , 2021 , 14,	5.2	4
40	Magnetic Separation of Antibodies with High Binding Capacity by Site-Directed Immobilization of Protein A-Domains to Bare Iron Oxide Nanoparticles. <i>ACS Applied Nano Materials</i> , 2021 , 4, 4956-4963	5.6	3
39	DNA Binding to the Silica: Cooperative Adsorption in Action. <i>Langmuir</i> , 2021 , 37, 5902-5908	4	5
38	The Effect of pH and Viscosity on Magnetophoretic Separation of Iron Oxide Nanoparticles. <i>Magnetochemistry</i> , 2021 , 7, 80	3.1	4
37	Purification of a peptide tagged protein via an affinity chromatographic process with underivatized silica. <i>Engineering in Life Sciences</i> , 2021 , 21, 549-557	3.4	1
36	Selective ene-reductase immobilization to magnetic nanoparticles through a novel affinity tag. <i>Biotechnology Journal</i> , 2021 , 16, e2000366	5.6	6
35	Detection of targeted bacteria species on filtration membranes. <i>Analyst, The</i> , 2021 , 146, 3549-3556	5	2
34	Immobilization of PETase enzymes on magnetic iron oxide nanoparticles for the decomposition of microplastic PET. <i>Nanoscale Advances</i> , 2021 , 3, 4395-4399	5.1	4
33	Characterization of an active ingredient made of nanoscale iron(oxyhydr)oxide for the treatment of hyperphosphatemia <i>RSC Advances</i> , 2021 , 11, 17669-17682	3.7	1
32	Iron Oxide Nanoparticles: Multiwall Carbon Nanotube Composite Materials for Batch or Chromatographic Biomolecule Separation. <i>Nanoscale Research Letters</i> , 2021 , 16, 30	5	1
31	Insights on Alanine and Arginine Binding to Silica with Atomic Resolution. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 9384-9390	6.4	1
30	Visualization of USPIO-labeled melt-electrowritten scaffolds by non-invasive magnetic resonance imaging. <i>Biomaterials Science</i> , 2021 , 9, 4607-4612	7.4	3
29	Crystal Structure and Spectroscopic Analysis of the Compatible Solute NEAcetyl-L-2,4-Diaminobutyric Acid. <i>Crystals</i> , 2020 , 10, 1136	2.3	

(2017-2020)

28	Controlled Synthesis of Magnetic Iron Oxide Nanoparticles: Magnetite or Maghemite?. <i>Crystals</i> , 2020 , 10, 214	2.3	34
27	Immunomagnetic Separation of Microorganisms with Iron Oxide Nanoparticles. <i>Chemosensors</i> , 2020 , 8, 17	4	16
26	Anaplerotic Pathways in : The Role of the Sodium Gradient. Frontiers in Microbiology, 2020, 11, 561800	5.7	2
25	Seeking Innovative Affinity Approaches: A Performance Comparison between Magnetic Nanoparticle Agglomerates and Chromatography Resins for Antibody Recovery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 39967-39978	9.5	6
24	Buffer Influence on the Amino Acid Silica Interaction. <i>ChemPhysChem</i> , 2020 , 21, 2347-2356	3.2	7
23	Magnetic Separation in Bioprocessing Beyond the Analytical Scale: From Biotechnology to the Food Industry. <i>Frontiers in Bioengineering and Biotechnology</i> , 2019 , 7, 233	5.8	27
22	Magnetic Recovery of Cellulase from Cellulose Substrates with Bare Iron Oxide Nanoparticles. <i>ChemNanoMat</i> , 2019 , 5, 422-426	3.5	8
21	Rational Design of Iron Oxide Binding Peptide Tags. <i>Langmuir</i> , 2019 , 35, 8472-8481	4	4
20	Reactivity of Re2O7 in aromatic solvents ICleavage of a EO-4 lignin model substrate by Lewis-acidic rhenium oxide nanoparticles. <i>Journal of Catalysis</i> , 2019 , 373, 190-200	7.3	6
19	Magnetic One-Step Purification of His-Tagged Protein by Bare Iron Oxide Nanoparticles. <i>ACS Omega</i> , 2019 , 4, 3790-3799	3.9	34
18	Design of Interactions Between Nanomaterials and Proteins: A Highly Affine Peptide Tag to Bare Iron Oxide Nanoparticles for Magnetic Protein Separation. <i>Biotechnology Journal</i> , 2019 , 14, e1800055	5.6	32
17	Experimental characterization and simulation of amino acid and peptide interactions with inorganic materials. <i>Engineering in Life Sciences</i> , 2018 , 18, 84-100	3.4	16
16	Bare Iron Oxide Nanoparticles for Magnetic Harvesting of Microalgae: From Interaction Behavior to Process Realization. <i>Nanomaterials</i> , 2018 , 8,	5.4	36
15	Potential-Controlled Tensiometry: A Tool for Understanding Wetting and Surface Properties of Conductive Powders by Electroimbibition. <i>Analytical Chemistry</i> , 2018 , 90, 14131-14136	7.8	4
14	Peptide binding to metal oxide nanoparticles. Faraday Discussions, 2017, 204, 233-250	3.6	26
13	Bio-nano interactions: cellulase on iron oxide nanoparticle surfaces. <i>Adsorption</i> , 2017 , 23, 281-292	2.6	24
12	Oxidation of magnetite nanoparticles: impact on surface and crystal properties. <i>CrystEngComm</i> , 2017 , 19, 246-255	3.3	101
11	Formation of iron oxide nanoparticles for the photooxidation of water: Alteration of finite size effects from ferrihydrite to hematite. <i>Scientific Reports</i> , 2017 , 7, 12609	4.9	28

10	Binding patterns of homo-peptides on bare magnetic nanoparticles: insights into environmental dependence. <i>Scientific Reports</i> , 2017 , 7, 14047	4.9	17
9	Probing properties of molecule-based interface systems: general discussion and Discussion of the Concluding Remarks. <i>Faraday Discussions</i> , 2017 , 204, 503-530	3.6	
8	Supramolecular effects in self-assembled monolayers: general discussion. <i>Faraday Discussions</i> , 2017 , 204, 123-158	3.6	2
7	Preparing macromolecular systems on surfaces: general discussion. <i>Faraday Discussions</i> , 2017 , 204, 395	5-4,168	
6	Supramolecular systems at liquid-solid interfaces: general discussion. <i>Faraday Discussions</i> , 2017 , 204, 271-295	3.6	2
5	Improvement of adhesion strength of self-adhesive silicone rubber on thermoplastic substrates [] Comparison of an atmospheric pressure plasma jet (APPJ) and a Pyrosil[] flame. <i>International Journal of Adhesion and Adhesives</i> , 2016 , 66, 65-72	3.4	21
4	Oleate coating of iron oxide nanoparticles in aqueous systems: the role of temperature and surfactant concentration. <i>Journal of Nanoparticle Research</i> , 2016 , 18, 1	2.3	19
3	Immobilization of Cellulase on Magnetic Nanocarriers. <i>ChemistryOpen</i> , 2016 , 5, 183-187	2.3	33
2	Nature of Interactions of Amino Acids with Bare Magnetite Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 23032-23041	3.8	104
1	Influencing factors in the CO-precipitation process of superparamagnetic iron oxide nano particles: A model based study. <i>Journal of Magnetism and Magnetic Materials</i> , 2015 , 377, 81-89	2.8	98