
Andrea Dlaskova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6523619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contribution of Mitochondria to Insulin Secretion by Various Secretagogues. Antioxidants and Redox Signaling, 2022, 36, 920-952.	5.4	10
2	The Use of Reactive Oxygen Species Production by Succinate-Driven Reverse Electron Flow as an Index of Complex 1 Activity in Isolated Brown Adipose Tissue Mitochondria. Methods in Molecular Biology, 2021, 2310, 247-258.	0.9	0
3	The Pancreatic Î ² -Cell: The Perfect Redox System. Antioxidants, 2021, 10, 197.	5.1	16
4	Glucose-Induced Expression of DAPIT in Pancreatic Î ² -Cells. Biomolecules, 2020, 10, 1026.	4.0	5
5	Mitochondrial Redox Signaling and Cristae Morphology Changes Upon 2-Keto-Isocaproate and Fatty Acid-Stimulated Insulin Secretion. Biophysical Journal, 2020, 118, 450a.	0.5	0
6	Mitochondrial Superoxide Production Decreases on Glucose-Stimulated Insulin Secretion in Pancreatic β Cells Due to Decreasing Mitochondrial Matrix NADH/NAD ⁺ Ratio. Antioxidants and Redox Signaling, 2020, 33, 789-815.	5.4	25
7	Overexpression of native IF1 downregulates glucose-stimulated insulin secretion by pancreatic INS-1E cells. Scientific Reports, 2020, 10, 1551.	3.3	23
8	Mitochondrial cristae narrowing upon higher 2-oxoglutarate load. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 659-678.	1.0	31
9	Dynamic of mitochondrial network, cristae, and mitochondrial nucleoids in pancreatic β-cells. Mitochondrion, 2019, 49, 245-258.	3.4	25
10	Regulation of glucoseâ€stimulated insulin secretion by <scp>ATP</scp> ase Inhibitory Factor 1 (<scp>IF</scp> 1). FEBS Letters, 2018, 592, 999-1009.	2.8	29
11	3D super-resolution microscopy reflects mitochondrial cristae alternations and mtDNA nucleoid size and distribution. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 829-844.	1.0	37
12	Nkx6.1 decline accompanies mitochondrial DNA reduction but subtle nucleoid size decrease in pancreatic islet β-cells of diabetic Goto Kakizaki rats. Scientific Reports, 2017, 7, 15674.	3.3	12
13	Superoxide Generation, Bioenergetics Parameters, and Mitochondrial Morphology in Insulinoma INS-1E Cells upon Glucose Addition and ATPase Inhibitory Factor (IF1) Knockdown. Free Radical Biology and Medicine, 2017, 112, 150.	2.9	Ο
14	Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin downâ€regulation concomitant to MICOS clustering. FASEB Journal, 2016, 30, 1941-1957.	0.5	35
15	Coupled aggregation of mitochondrial single-strand DNA-binding protein tagged with Eos fluorescent protein visualizes synchronized activity of mitochondrial nucleoids. Molecular Medicine Reports, 2015, 12, 5185-5190.	2.4	1
16	H ₂ O ₂ -Activated Mitochondrial Phospholipase iPLA ₂ γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling <i>via</i> G-Protein–Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic β-Cells. Antioxidants and Redox Signaling, 2015, 23, 958-972.	5.4	45
17	Distribution of mitochondrial DNA nucleoids inside the linear tubules vs. bulk parts of mitochondrial network as visualized by 4Pi microscopy. Journal of Bioenergetics and Biomembranes, 2015, 47, 255-263.	2.3	12
18	Mitochondrial DNA Nucleoid Distribution at Simulated Pathologies as Visualized by 3D Super-Resolution Biplane FPALM / dSTORM Microscopy. Biophysical Journal, 2014, 106, 203a.	0.5	0

ANDREA DLASKOVA

#	Article	IF	CITATIONS
19	Distribution of mitochondrial nucleoids upon mitochondrial network fragmentation and network reintegration in HEPG2 cells. International Journal of Biochemistry and Cell Biology, 2013, 45, 593-603.	2.8	39
20	Mitochondrial DNA Nucleoid Redistribution after Mitochondrial Network Fragmentation as Visualized by 3D Super-Resolution Biplane Fpalm Microscopy. Biophysical Journal, 2013, 104, 657a.	0.5	0
21	Visualization of mt nucleoids by superresolution microscopy techniques. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, S154-S155.	1.0	0
22	Redox Homeostasis in Pancreatic Cells. Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-16.	4.0	29
23	3D Visualization of Mitochondrial Network and Nucleoids of mtDNA in Ins1E and HepG2 Cells at 30 Nm Resolution by Biplane FPALM Microscopy. Biophysical Journal, 2011, 100, 618a.	0.5	0
24	Sample drift correction in 3D fluorescence photoactivation localization microscopy. Optics Express, 2011, 19, 15009.	3.4	161
25	4Pi microscopy reveals an impaired three-dimensional mitochondrial network of pancreatic islet β-cells, an experimental model of type-2 diabetes. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1327-1341.	1.0	55
26	The role of UCP 1 in production of reactive oxygen species by mitochondria isolated from brown adipose tissue. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1470-1476.	1.0	62
27	UCP1 ablation increases the production of reactive oxygen species by mitochondria isolated from brown adipose tissue. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 85.	1.0	0
28	Fluorescent in situ hybridization of mitochondrial DNA and RNA Acta Biochimica Polonica, 2010, 57, .	0.5	11
29	Oxidative stress caused by blocking of mitochondrial Complex I H+ pumping as a link in aging/disease vicious cycle. International Journal of Biochemistry and Cell Biology, 2008, 40, 1792-1805.	2.8	53
30	Mitochondrial Complex I superoxide production is attenuated by uncoupling. International Journal of Biochemistry and Cell Biology, 2008, 40, 2098-2109.	2.8	41
31	Certain aspects of uncoupling due to mitochondrial uncoupling proteins in vitro and in vivo. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 467-473.	1.0	18
32	Recruitment of mitochondrial uncoupling protein UCP2 after lipopolysaccharide induction. International Journal of Biochemistry and Cell Biology, 2005, 37, 809-821.	2.8	19
33	Redox Signaling is Essential for Insulin Secretion. , 0, , .		0