Massimo A Ghioni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6523615/publications.pdf

Version: 2024-02-01

216 papers

5,323 citations

35 h-index 106344 65 g-index

219 all docs

219 docs citations

times ranked

219

2583 citing authors

#	Article	IF	CITATIONS
1	Avalanche photodiodes and quenching circuits for single-photon detection. Applied Optics, 1996, 35, 1956.	2.1	850
2	Evolution and prospects for single-photon avalanche diodes and quenching circuits. Journal of Modern Optics, 2004, 51, 1267-1288.	1.3	257
3	Progress in Silicon Single-Photon Avalanche Diodes. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 852-862.	2.9	237
4	An Innovative Digital Control Architecture for Low-Voltage, High-Current DC–DC Converters With Tight Voltage Regulation. IEEE Transactions on Power Electronics, 2004, 19, 210-218.	7.9	154
5	Autotuning of Digitally Controlled DC–DC Converters Based on Relay Feedback. IEEE Transactions on Power Electronics, 2007, 22, 199-207.	7.9	138
6	20â€ps timing resolution with singleâ€photon avalanche diodes. Review of Scientific Instruments, 1989, 60, 1104-1110.	1.3	131
7	Double epitaxy improves single-photon avalanche diode performance. Electronics Letters, 1989, 25, 841.	1.0	120
8	Optical crosstalk in single photon avalanche diode arrays: a new complete model. Optics Express, 2008, 16, 8381.	3.4	106
9	Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors. IEEE Journal of Solid-State Circuits, 2003, 38, 1298-1301.	5.4	103
10	Development of new photon-counting detectors for single-molecule fluorescence microscopy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120035.	4.0	100
11	35 ps time resolution at room temperature with large area single photon avalanche diodes. Electronics Letters, 2005, 41, 272.	1.0	86
12	A VLSI-compatible high-speed silicon photodetector for optical data link applications. IEEE Transactions on Electron Devices, 1996, 43, 1054-1060.	3.0	84
13	Silicon planar technology for single-photon optical detectors. IEEE Transactions on Electron Devices, 2003, 50, 918-925.	3.0	82
14	Progress in Quenching Circuits for Single Photon Avalanche Diodes. IEEE Transactions on Nuclear Science, 2010, , .	2.0	82
15	Compact active quenching circuit for fast photon counting with avalanche photodiodes. Review of Scientific Instruments, 1996, 67, 3440-3448.	1.3	76
16	High-throughput FCS using an LCOS spatial light modulator and an 8 $\rm \tilde{A}-1$ SPAD array. Biomedical Optics Express, 2010, 1, 1408.	2.9	74
17	New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration. Journal of Modern Optics, 2012, 59, 1489-1499.	1.3	72
18	Power Line Communication in Digitally Controlled DC–DC Converters Using Switching Frequency Modulation. IEEE Transactions on Industrial Electronics, 2008, 55, 1509-1518.	7.9	71

#	Article	IF	Citations
19	An integrated active-quenching circuit for single-photon avalanche diodes. IEEE Transactions on Instrumentation and Measurement, 2000, 49, 1167-1175.	4.7	57
20	An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies. Applied Physics Letters, 2012, 101, .	3.3	56
21	Silicon Photon-Counting Avalanche Diodes for Single-Molecule Fluorescence Spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 248-267.	2.9	56
22	Recent Advances and Future Perspectives of Singleâ€Photon Avalanche Diodes for Quantum Photonics Applications. Advanced Quantum Technologies, 2021, 4, 2000102.	3.9	54
23	Four Channel, 40 ps Resolution, Fully Integrated Time-to-Amplitude Converter for Time-Resolved Photon Counting. IEEE Journal of Solid-State Circuits, 2012, 47, 699-708.	5.4	51
24	Observation of avalanche propagation by multiplication assisted diffusion in pâ€n junctions. Applied Physics Letters, 1990, 57, 489-491.	3.3	49
25	New silicon epitaxial avalanche diode for single-photon timing at room temperature. Electronics Letters, 1988, 24, 1476.	1.0	44
26	Novel control technique for single inductor multiple output converters operating in CCM with reduced cross-regulation. IEEE Applied Power Electronics Conference and Exposition, 2008, , .	0.0	42
27	Synchronous–Asynchronous Digital Voltage-Mode Control for DC–DC Converters. IEEE Transactions on Power Electronics, 2007, 22, 1261-1268.	7.9	41
28	Fully Integrated Active Quenching Circuit Driving Custom-Technology SPADs With 6.2-ns Dead Time. IEEE Photonics Technology Letters, 2019, 31, 102-105.	2.5	41
29	Complete and Compact 32-Channel System for Time-Correlated Single-Photon Counting Measurements. IEEE Photonics Journal, 2013, 5, 6801514-6801514.	2.0	40
30	Avalanche detector with ultraclean response for time-resolved photon counting. IEEE Journal of Quantum Electronics, 1998, 34, 817-821.	1.9	38
31	Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization. Review of Scientific Instruments, 2015, 86, 113101.	1.3	38
32	A process and deep level evaluation tool: afterpulsing in avalanche junctions. , 0, , .		37
33	Modified single photon counting modules for optimal timing performance. Review of Scientific Instruments, 2006, 77, 033104.	1.3	36
34	Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes. Optics Express, 2006, 14, 5021.	3.4	36
35	Photon-Timing Jitter Dependence on Injection Position in Single-Photon Avalanche Diodes. IEEE Journal of Quantum Electronics, 2011, 47, 151-159.	1.9	36
36	Fourâ€hundredâ€picosecond singleâ€photon timing with commercially available avalanche photodiodes. Review of Scientific Instruments, 1988, 59, 1115-1121.	1.3	35

#	Article	IF	Citations
37	Single-photon avalanche diode with ultrafast pulse response free from slow tails. IEEE Electron Device Letters, 1993, 14, 360-362.	3.9	35
38	A New Approach to Optical Crosstalk Modeling in Single-Photon Avalanche Diodes. IEEE Photonics Technology Letters, 2008, 20, 330-332.	2.5	35
39	Large-area low-jitter silicon single photon avalanche diodes. Proceedings of SPIE, 2008, , .	0.8	35
40	Multipixel single-photon avalanche diode array for parallel photon counting applications. Journal of Modern Optics, 2009, 56, 326-333.	1.3	35
41	High-rate photon counting and picosecond timing with silicon-SPAD based compact detector modules. Journal of Modern Optics, 2007, 54, 225-237.	1.3	34
42	Recent advances in the detection of optical photons with silicon photodiodes. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 326, 290-294.	1.6	33
43	High-voltage integrated active quenching circuit for single photon count rate up to 80 Mcounts/s. Optics Express, 2016, 24, 17819.	3.4	32
44	Autotuning of Digitally Controlled Buck Converters Based on Relay Feedback. , 0, , .		31
45	Improving the performance of commercially available Geigerâ€mode avalanche photodiodes. Review of Scientific Instruments, 1991, 62, 163-167.	1.3	28
46	Photon-Timing Detector Module for Single-Molecule Spectroscopy With 60-ps Resolution. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10, 788-795.	2.9	28
47	Monolithic silicon matrix detector with 50 \hat{l} /4m photon counting pixels. Journal of Modern Optics, 2007, 54, 213-223.	1.3	28
48	High-speed and low-distortion solution for time-correlated single photon counting measurements: A theoretical analysis. Review of Scientific Instruments, 2017, 88, 123701.	1.3	28
49	152-dB Dynamic Range With a Large-Area Custom-Technology Single-Photon Avalanche Diode. IEEE Photonics Technology Letters, 2018, 30, 391-394.	2.5	28
50	Analysis of detector performance in a gigahertz clock rate quantum key distribution system. New Journal of Physics, 2011, 13, 075008.	2.9	27
51	Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules. PLoS ONE, 2017, 12, e0175766.	2.5	27
52	8-channel acquisition system for time-correlated single-photon counting. Review of Scientific Instruments, 2013, 84, 064705.	1.3	24
53	No dead-space optical time-domain reflectometer. Journal of Lightwave Technology, 1990, 8, 1278-1283.	4.6	23
54	Resonant-Cavity-Enhanced Single-Photon Avalanche Diodes on Reflecting Silicon Substrates. IEEE Photonics Technology Letters, 2008, 20, 413-415.	2.5	23

#	Article	IF	Citations
55	A Mixed-Signal Synchronous/Asynchronous Control for High-Frequency DC-DC Boost Converters. IEEE Transactions on Industrial Electronics, 2008, 55, 2053-2060.	7.9	23
56	8-spot smFRET analysis using two 8-pixel SPAD arrays. , 2013, 8590, .		23
57	Fast fully-integrated front-end circuit to overcome pile-up limits in time-correlated single photon counting with single photon avalanche diodes. Optics Express, 2018, 26, 15398.	3.4	23
58	Evolution and prospects for single-photon avalanche diodes and quenching circuits. Journal of Modern Optics, 2004, 51, 1267-1288.	1.3	23
59	Operation of silicon single photon avalanche diodes at cryogenic temperature. Review of Scientific Instruments, 2007, 78, 063105.	1.3	22
60	Digital Autotuning System for Inductor Current Sensing in Voltage Regulation Module Applications. IEEE Transactions on Power Electronics, 2008, 23, 2500-2506.	7.9	22
61	All-silicon avalanche photodiode sensitive at $1.3\mathrm{mu}\mathrm{m}$ with picosecond time resolution. IEEE Journal of Quantum Electronics, $1992, 28, 2678-2681.$	1.9	21
62	Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes. Review of Scientific Instruments, 2017, 88, 026103.	1.3	21
63	High-rate quantum key distribution at short wavelength: Performance analysis and evaluation of silicon single photon avalanche diodes. Journal of Modern Optics, 2003, 50, 2251-2269.	1.3	20
64	Microchips and single-photon avalanche diodes for DNA separation with high sensitivity. Electrophoresis, 2006, 27, 3797-3804.	2.4	20
65	High-throughput multispot single-molecule spectroscopy. , 2010, 7571, 75710G-75710G11.		20
66	83-ps Timing Jitter With a Red-Enhanced SPAD and a Fully Integrated Front End Circuit. IEEE Photonics Technology Letters, 2018, 30, 1727-1730.	2.5	20
67	Custom silicon technology for SPAD-arrays with red-enhanced sensitivity and low timing jitter. Optics Express, 2021, 29, 4559.	3.4	20
68	Planar silicon SPADs with 200-μm diameter and 35-ps photon timing resolution. , 2006, 6372, 203.		19
69	SPAD array module for multi-dimensional photon timing applications. Journal of Modern Optics, 2012, 59, 131-139.	1.3	19
70	Readout Architectures for High Efficiency in Time-Correlated Single Photon Counting Experiments—Analysis and Review. IEEE Photonics Journal, 2017, 9, 1-15.	2.0	19
71	Modeling photon detection efficiency and temporal response of single photon avalanche diodes. Proceedings of SPIE, 2009, , .	0.8	18
72	Cumulative data acquisition in comparative photon-counting three-dimensional imaging. Journal of Modern Optics, 2011, 58, 244-256.	1.3	18

#	Article	IF	CITATIONS
73	A physically based model for evaluating the photon detection efficiency and the temporal response of SPAD detectors. Journal of Modern Optics, 2011, 58, 210-224.	1.3	18
74	Optimum amplification of microchannelâ€plate photomultiplier pulses for picosecond photon timing. Review of Scientific Instruments, 1991, 62, 2596-2601.	1.3	17
75	Microelectronic photosensors for genetic diagnostic microsystems. Sensors and Actuators B: Chemical, 2004, 100, 158-162.	7.8	17
76	Radiation tests of single photon avalanche diode for space applications. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 711, 65-72.	1.6	17
77	32ps timing jitter with a fully integrated front end circuit and single photon avalanche diodes. Electronics Letters, 2017, 53, 328-329.	1.0	17
78	Large-area avalanche diodes for picosecond time-correlated photon counting., 0,,.		16
79	Mixed-Signal Voltage-Mode Control for DC–DC Converters With Inherent Analog Derivative Action. IEEE Transactions on Power Electronics, 2008, 23, 1485-1493.	7.9	16
80	Digital Auto-Tuning System for Inductor Current Sensing in VRM Applications. , 0, , .		15
81	Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field. Proceedings of SPIE, 2009, , .	0.8	15
82	Resonant-cavity-enhanced single photon avalanche diodes on double silicon-on-insulator substrates. Journal of Modern Optics, 2009, 56, 309-316.	1.3	15
83	Single-Photon Counting Detectors. IEEE Photonics Journal, 2011, 3, 274-277.	2.0	15
84	Parallel multispot smFRET analysis using an 8-pixel SPAD array. Proceedings of SPIE, 2012, 8228, .	0.8	15
85	High-efficiency integrated readout circuit for single photon avalanche diode arrays in fluorescence lifetime imaging. Review of Scientific Instruments, 2016, 87, 113110.	1.3	15
86	37ps-Precision Time-Resolving Active Quenching Circuit for High-Performance Single Photon Avalanche Diodes. IEEE Photonics Journal, 2018, 10, 1-13.	2.0	15
87	New photon-counting detectors for single-molecule fluorescence spectroscopy and imaging. , 2011, 8033, 803316.		14
88	A 2-GHz Bandwidth, Integrated Transimpedance Amplifier for Single-Photon Timing Applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23, 2819-2828.	3.1	14
89	Performance optimization of active quenching circuits for picosecond timing with single photon avalanche diodes. Review of Scientific Instruments, 1995, 66, 4289-4295.	1.3	13
90	High-Performance Synchronous-Asynchronous Digital Voltage-Mode Control for dc-dc Converters. , 0, , .		13

#	Article	IF	CITATIONS
91	Single-molecule FRET experiments with a red-enhanced custom technology SPAD. , 2013, 8590, .		13
92	Eight-Channel Fully Adjustable Pulse Generator. IEEE Transactions on Instrumentation and Measurement, 2015, 64, 2399-2408.	4.7	13
93	Red-Enhanced Photon Detection Module Featuring a \$32 imes 1\$ Single-Photon Avalanche Diode Array. IEEE Photonics Technology Letters, 2018, 30, 557-560.	2.5	13
94	High-accuracy picosecond characterization of gain-switched laser diodes. Optics Letters, 1989, 14, 1341.	3.3	12
95	Constantâ€fraction circuits for picosecond photon timing with microchannel plate photomultipliers. Review of Scientific Instruments, 1993, 64, 118-124.	1.3	12
96	Analysis of high-performance synchronous-asynchronous digital control for DC-DC boost converters. , 0 , , .		12
97	Self-suppression of reset induced triggering in picosecond SPAD timing circuits. Review of Scientific Instruments, 2007, 78, 086112.	1.3	12
98	High-throughput single-molecule fluorescence spectroscopy using parallel detection. , 2010, 7608, .		12
99	Improving the performance of silicon single-photon avalanche diodes. Proceedings of SPIE, 2011, , .	0.8	12
100	48-spot single-molecule FRET setup with periodic acceptor excitation. Journal of Chemical Physics, 2018, 148, 123304.	3.0	12
101	Toward ultra-fast time-correlated single-photon counting: A compact module to surpass the pile-up limit. Review of Scientific Instruments, 2021, 92, 063702.	1.3	12
102	Monolithic time-to-amplitude converter for photon timing applications. Proceedings of SPIE, 2009, , .	0.8	11
103	Improved Timing Resolution Single-Photon Detectors in Daytime Free-Space Quantum Key Distribution With 1.25 GHz Transmission Rate. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1084-1090.	2.9	11
104	32-channel time-correlated-single-photon-counting system for high-throughput lifetime imaging. Review of Scientific Instruments, 2017, 88, 083704.	1.3	11
105	Photon timing OTDR: a multiphoton backscattered pulse approach. Electronics Letters, 1990, 26, 1569.	1.0	10
106	True constant fraction trigger circuit for picosecond photon-timing with ultrafast microchannel plate photomultipliers. Review of Scientific Instruments, 1997, 68, 2228-2237.	1.3	10
107	A probe detector for defectivity assessment in p-n junctions. IEEE Transactions on Electron Devices, 2000, 47, 609-616.	3.0	10
108	A 48-pixel array of single photon avalanche diodes for multispot single molecule analysis. Proceedings of SPIE, 2013, 8631, .	0.8	10

#	Article	IF	Citations
109	Gigacount/second Photon Detection Module Based on an 8x8 Single-Photon Avalanche Diode Array. IEEE Photonics Technology Letters, 2016, 28, 1-1.	2.5	10
110	Compact eight-channel photon counting module with monolithic array detector. Proceedings of SPIE, 2007, , .	0.8	10
111	Hybrid Resonant Switched-Capacitor Converter for 48–3.4 V Direct Conversion. IEEE Transactions on Power Electronics, 2022, 37, 12998-13002.	7.9	10
112	Silicon planar technology for single-photon optical detectors. , 2004, , .		9
113	Custom single-photon avalanche diode with integrated front-end for parallel photon timing applications. Review of Scientific Instruments, 2012, 83, 033104.	1.3	9
114	High performance time-to-amplitude converter array. , 2013, , .		9
115	Avalanche current readâ€out circuit for lowâ€jitter parallel photon timing. Electronics Letters, 2013, 49, 1017-1018.	1.0	9
116	Semiconductor-Based Detectors. Experimental Methods in the Physical Sciences, 2013, 45, 83-146.	0.1	9
117	Planar silicon SPADs with improved photon detection efficiency. , 2010, , .		8
118	A $6\tilde{A}-8$ photon-counting array detector system for fast and sensitive analysis of protein microarrays. Sensors and Actuators B: Chemical, 2010, 149, 420-426.	7.8	8
119	Ultra-compact 32-channel system for time-correlated single-photon counting measurements. Proceedings of SPIE, 2013, , .	0.8	8
120	Design issues and performance analysis of CCM boost converters with RHP zero mitigation via inductor current sensing. Journal of Power Electronics, 2021, 21, 285-295.	1.5	8
121	Monolithic dual-detector for photon-correlation spectroscopy with wide dynamic range and optical 70-ps resolution. IEEE Journal of Quantum Electronics, 2001, 37, 1588-1593.	1.9	7
122	A view on progress of silicon single-photon avalanche diodes and quenching circuits., 2006, 6372, 123.		7
123	Single-Photon Avalanche Detectors for Quantum Communications. , 2010, , .		7
124	Towards picosecond array detector for single-photon time-resolved multispot parallel analysis. Journal of Modern Optics, 2011, 58, 233-243.	1.3	7
125	Avalanche Current Measurements in SPADs by Means of Hot-Carrier Luminescence. IEEE Photonics Technology Letters, 2011, 23, 1319-1321.	2.5	7
126	High-performance silicon single-photon avalanche diode array. Proceedings of SPIE, 2009, , .	0.8	6

#	Article	IF	Citations
127	Portable genotyping system: Four-colour microchip electrophoresis. Sensors and Actuators B: Chemical, 2010, 143, 583-589.	7.8	6
128	Time-correlated single-photon counting system based on a monolithic time-to-amplitude converter. Journal of Modern Optics, 2012, 59, 1512-1524.	1.3	6
129	High-detection efficiency and picosecond timing compact detector modules with red-enhanced SPADs. , 2012, , .		6
130	Optical crosstalk in SPAD arrays for high-throughput single-molecule fluorescence spectroscopy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 912, 255-258.	1.6	6
131	4.3ps rms jitter time to amplitude converter in 350nm Si-Ge technology. , 2021, , .		6
132	Ultrafast single photon avalanche diodes without slow tails in the pulse response. IEEE Transactions on Electron Devices, 1993, 40, 2145.	3.0	5
133	In-depth analysis of optical crosstalk in single-photon avalanche diode arrays. , 2007, , .		5
134	Digital Dead Time Auto-Tuning for Maximum Efficiency Operation of Isolated DC-DC Converters. , 2007,		5
135	Single Photon Avalanche Diodes for space applications. , 2011, , .		5
136	New silicon technologies enable high-performance arrays of single photon avalanche diodes. Proceedings of SPIE, 2013, 8727, .	0.8	5
137	A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy. Review of Scientific Instruments, 2014, 85, 103101.	1.3	5
138	Silicon technologies for arrays of Single Photon Avalanche Diodes. , 2016, 9858, .		5
139	(PS)2: a new semiconductor device for positron-sensitive picosecond detection of single optical photons. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1991, 310, 184-188.	1.6	4
140	STRAP for the VLT instruments. , 1997, , .		4
141	A low-complexity high-performance digital control architecture for voltage regulator modules. , 0, , .		4
142	High-performance mixed-signal voltage-mode control for dc-dc converters with inherent analog derivative action. , 2007, , .		4
143	Dualâ€color microchip electrophoresis with singleâ€photon avalanche diodes: Application to mutation detection. Electrophoresis, 2008, 29, 4972-4975.	2.4	4
144	Monolithic time to amplitude converter for time correlated single photon counting. Review of Scientific Instruments, 2009, 80, 086102.	1.3	4

#	Article	IF	CITATIONS
145	Note: Fully integrated time-to-amplitude converter in Si–Ge technology. Review of Scientific Instruments, 2010, 81, 106103.	1.3	4
146	Planar silicon SPADs with improved photon detection efficiency. Proceedings of SPIE, 2011, , .	0.8	4
147	Compact 32-channel time-resolved single-photon detection system. Proceedings of SPIE, 2013, , .	0.8	4
148	16-Ch time-resolved single-molecule spectroscopy using line excitation. Proceedings of SPIE, 2017, 10071, .	0.8	4
149	Development and characterization of an 8x8 SPAD-array module for gigacount per second applications. Proceedings of SPIE, 2017, 10229, .	0.8	4
150	Triple epitaxial singleâ€photon avalanche diode for multichannel timing applications. Electronics Letters, 2018, 54, 644-645.	1.0	4
151	<title>Novel avalanche photodiode for adaptive optics</title> ., 1994, 2201, 650.		3
152	<title>Single-photon avalanche detectors for low-light-level imaging</title> ., 1997, 3114, 333.		3
153	Design-oriented simulation of the Photon Detection Efficiency and temporal response of Single Photon Avalanche Diodes. , 2009, , .		3
154	Single photon counting detectors in action: Retrospect and prospect. , 2010, , .		3
155	Photonics for Life. IEEE Pulse, 2011, 2, 16-23.	0.3	3
156	Silicon single-photon avalanche diodes for high-performance parallel photon timing. Proceedings of SPIE, 2012 , , .	0.8	3
157	4Âns dead time with a fully integrated active quenching circuit driving a custom single photon avalanche diode. Review of Scientific Instruments, 2022, 93, 043103.	1.3	3
158	Propagating avalanche position-sensitive photon detector with resolution in the micrometer and picosecond range. IEEE Electron Device Letters, 1992, 13, 35-37.	3.9	2
159	High-sensitivity photodetectors with on-chip pinhole for laser scanning microscopy. IEEE Transactions on Electron Devices, 2000, 47, 1472-1476.	3.0	2
160	On-chip probes for silicon defectivity ranking and mapping. , 0, , .		2
161	Recent advances in silicon single photon avalanche diodes and their applications. , 2006, , .		2
162	Monolithic front-end system for photon timing applications. , 2009, , .		2

#	Article	IF	CITATIONS
163	Versatile electronic module for the operation of any silicon single photon avalanche diode. Journal of Modern Optics, 2009, 56, 317-325.	1.3	2
164	Parallel fluorescence photon timing module with monolithic SPAD array detector. Proceedings of SPIE, $2011, \ldots$	0.8	2
165	Planar technologies for SPAD arrays with improved performances. , 2012, , .		2
166	A simple and flexible FPGA based autocorrelator for afterpulse characterization of single-photon detectors. , 2014, , .		2
167	Accurate non-invasive measurement of the turn-on transition of fast gated single photon avalanche diodes. Review of Scientific Instruments, 2019, 90, 033102.	1.3	2
168	10-nanosecond dead time and low afterpulsing with a free-running reach-through single-photon avalanche diode. Review of Scientific Instruments, 2022, 93, .	1.3	2
169	ULTRAFAST SINGLE PHOTON DETECTOR WITH DOUBLE EPITAXIAL STRUCTURE FOR MINIMUM CARRIER DIFFUSION EFFECT. Journal De Physique Colloque, 1988, 49, C4-633-C4-636.	0.2	1
170	<title>Single-photon avalanche detectors for fluorescence imaging applications</title> ., 1997,,.		1
171	Silicon p–n junctions biased above breakdown used as monitors of carrier lifetime. Materials Science in Semiconductor Processing, 2001, 4, 159-161.	4.0	1
172	Photon counting and timing detector modules for single-molecule spectroscopy and DNA analysis. , 0, , .		1
173	Novel Low-Cost Microstepping Driving Technique with Digital Current Estimation. IEEE Applied Power Electronics Conference and Exposition, 2007, , .	0.0	1
174	Silicon single photon avalanche diodes: situation and prospect. , 2007, , .		1
175	Silicon SPAD with near-infrared enhanced spectral response. , 2011, , .		1
176	Compact eight channel SPAD module for photon timing applications. , 2011, , .		1
177	High performance SPAD array detectors for parallel photon timing applications. , 2011, , .		1
178	Scintillating fibers readout by Single Photon Avalanche Diodes (SPAD) for space applications. Proceedings of SPIE, 2012, , .	0.8	1
179	High-performance SPAD array detectors for parallel photon timing applications. , 2012, , .		1
180	A Multispot Confocal Platform for High-Throughput Freely Diffusing Single-Molecule FRET Studies. Biophysical Journal, 2016, 110, 194a-195a.	0.5	1

#	Article	IF	CITATIONS
181	Highly efficient readout integrated circuit for dense arrays of SPAD detectors in time-correlated measurements. Proceedings of SPIE, 2017 , , .	0.8	1
182	Improving the timing accuracy of SiPMs by timeâ€walk compensation. Electronics Letters, 2017, 53, 171-173.	1.0	1
183	Note: Wide-operating-range control for thermoelectric coolers. Review of Scientific Instruments, 2017, 88, 116102.	1.3	1
184	MICROELECTRONIC ULTRASENSITIVE DETECTORS FOR CHIP ELECTROPHORESIS MICROSYSTEMS., 2002,,.		1
185	Ultra Low-Level Ion Implantation Damage Detected by p-n Junctions Biased above Breakdown. Solid State Phenomena, 2001, 82-84, 431-440.	0.3	0
186	Correction to "Silicon planar technology for single-photon optical detectors". IEEE Transactions on Electron Devices, 2003, 50, 1819-1819.	3.0	0
187	Correction to "An Innovative Digital Control Architecture for Low-Voltage, High-Current DC–DC Converters With Tight Voltage Regulation― IEEE Transactions on Power Electronics, 2004, 19, 567-567.	7.9	0
188	MINIATURE MODULES FOR SINGLE-PHOTON DETECTION., 2004,,.		0
189	Toward single-molecule detection with very compact DNA sequencer based on single-photon avalanche diode array. Proceedings of SPIE, 2008, , .	0.8	0
190	Photon-timing jitter dependence on the injection position in single-photon avalanche diodes. Proceedings of SPIE, 2010, , .	0.8	0
191	Monolithic Time-to-Amplitude converter for TCSPC applications with 45 ps time resolution. , 2011, , .		0
192	Timing enhanced silicon SPAD design. , 2011, , .		0
193	An Analysis of Single-Photon Detectors in an Environmentally Robust GigaHertz Clock Rate Quantum Key Distribution System. , 2011, , .		0
194	Fully integrated time-to-amplitude converter for multidimensional TCSPC applications. Proceedings of SPIE, $2011, \ldots$	0.8	0
195	4 channel, 20 ps resolution, monolithic time-to-amplitude converter for multichannel TCSPC systems. Proceedings of SPIE, 2012, , .	0.8	0
196	Benchmark of a New Red-Enhanced Custom Technology Spad Detector for Single-Molecule FRET Experiments. Biophysical Journal, 2012, 102, 278a.	0.5	0
197	Integrated electronics for time-resolved array of single-photon avalanche diodes. , 2013, , .		0
198	An extremely low-noise heralded single-photon source without temporal post-selection. , 2013, , .		0

#	Article	IF	CITATIONS
199	High-performance timing electronics for single photon avalanche diode arrays. Proceedings of SPIE, 2015, , .	0.8	0
200	A 16 Channel Spad Array for High-Throughput Tcspc Measurements of Single-Molecule FRET of Freely Diffusing Molecules. Biophysical Journal, 2016, 110, 633a.	0.5	0
201	Toward a 2D high-performance multi-channel system for time-correlated single-photon counting applications., 2017,,.		0
202	High-efficiency dynamic routing architecture for the readout of single photon avalanche diode arrays in time-correlated measurements. Proceedings of SPIE, 2017, , .	0.8	0
203	High-performance integrated pick-up circuit for SPAD arrays in time-correlated single photon counting., 2017,,.		O
204	Development of a high-performance multichannel system for time-correlated single photon counting. , 2017, , .		0
205	Overcoming Pile-up Limitation in Fluorescence Lifetime Imaging. , 2021, , .		O
206	COMPACT ELECTROPHORESIS SYSTEM FOR GENETIC DIAGNOSTICS WITH ULTRASENSITIVE MICROSENSORS. , 2004, , .		0
207	Highly efficient router-based readout algorithm for single-photon-avalanche-diode imagers for time-correlated experiments. , 2018, , .		O
208	Smart routing logic for highly efficient readout of single photon avalanche diode arrays for time-resolved imaging. , 2018 , , .		0
209	Towards high-speed, low-distortion time-correlated single photon counting measurements. , 2018, , .		O
210	Fully integrated electronics for high-performance time-resolved imagers with single photon avalanche diode arrays. , 2018 , , .		0
211	Fast fully integrated electronics for time-resolved imaging with high-performance single photon avalanche diodes., 2018,,.		0
212	Fast fully integrated active quenching circuit for single photon counting up to 160 Mcounts/s. , 2019, , .		0
213	High performance single photon counting and timing with single photon avalanche diodes., 2019,,.		0
214	Fully integrated high-speed electronics for remote sensing with a large array of single photon avalanche diodes., 2019,,.		0
215	8x8 single photon counting module for spaceborne lidar. , 2019, , .		0
216	High-speed fully-integrated electronics for high-performance measurements with single photon avalanche diode arrays. , 2019, , .		0