Ahmad Umar

List of Publications by Citations

Source: https://exaly.com/author-pdf/6523502/ahmad-umar-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 567
 18,128
 69
 107

 papers
 citations
 h-index
 g-index

 618
 21,068
 3.8
 7.34

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
567	Zinc Oxide Nanostructures for NO Gas-Sensor Applications: A Review. <i>Nano-Micro Letters</i> , 2015 , 7, 97-1	20 9.5	480
566	Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. <i>Nanoscale</i> , 2014 , 6, 12120-9	7.7	443
565	Zinc oxide nanonail based chemical sensor for hydrazine detection. <i>Chemical Communications</i> , 2008 , 16	6 5 88	401
564	Hierarchical SnOIhanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 2174-84	9.5	393
563	Antimicrobial properties of ZnO nanomaterials: A review. <i>Ceramics International</i> , 2017 , 43, 3940-3961	5.1	266
562	Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe ions and tetracyclines. <i>Journal of Colloid and Interface Science</i> , 2019 , 539, 332-341	9.3	259
561	Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties. <i>Nanotechnology</i> , 2007 , 18, 115603	3.4	211
560	ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties. <i>Nanotechnology</i> , 2006 , 17, 2174-2180	3.4	200
559	Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures. <i>Nanoscale</i> , 2013 , 5, 7066-73	7.7	196
558	A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases. <i>Environmental Science & Environmental </i>	10.3	192
557	Highly effective Fe-doped TiOlhanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds. <i>Journal of Colloid and Interface Science</i> , 2015 , 450, 213-223	9.3	185
556	Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation. <i>Nanotechnology</i> , 2006 , 17, 4072-7	3.4	173
555	Catalyst-free large-quantity synthesis of ZnO nanorods by a vaporBolid growth mechanism: Structural and optical properties. <i>Journal of Crystal Growth</i> , 2005 , 282, 131-136	1.6	171
554	Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. <i>Electrochemistry Communications</i> , 2009 , 11, 118-121	5.1	170
553	Metal oxide hollow nanostructures: Fabrication and Li storage performance. <i>Journal of Power Sources</i> , 2013 , 238, 376-387	8.9	163
552	Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures. <i>Talanta</i> , 2009 , 78, 284-9	6.2	157
551	Low-Temperature Synthesis of Flower-Shaped CuO Nanostructures by Solution Process: Formation Mechanism and Structural Properties. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 5729-5735	3.8	155

(2009-2018)

550	Pt nanoparticles decorated SnO2 nanoneedles for efficient CO gas sensing applications. <i>Sensors and Actuators B: Chemical</i> , 2018 , 256, 656-664	8.5	147
549	Flower-shaped CuO nanostructures: Structural, photocatalytic and XANES studies. <i>Catalysis Communications</i> , 2008 , 10, 11-16	3.2	142
548	Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets. <i>Electrochemistry Communications</i> , 2009 , 11, 278-281	5.1	138
547	Comprehensive investigation of CO2 adsorption on MgAlfO3 LDH-derived mixed metal oxides. Journal of Materials Chemistry A, 2013 , 1, 12782	13	130
546	High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO-ZnO nanodisks. <i>Sensors and Actuators B: Chemical</i> , 2019 , 298, 126870	8.5	129
545	Aligned hexagonal coaxial-shaped ZnO nanocolumns on steel alloy by thermal evaporation. <i>Applied Physics Letters</i> , 2006 , 88, 173120	3.4	129
544	ZnO nano-mushrooms for photocatalytic degradation of methyl orange. <i>Materials Letters</i> , 2013 , 97, 100	0-3.93	126
543	Selenium nanomaterials: An overview of recent developments in synthesis, properties and potential applications. <i>Progress in Materials Science</i> , 2016 , 83, 270-329	42.2	121
542	Bi2O3 nanorods: An efficient sunlight active photocatalyst for degradation of Rhodamine B and 2,4,6-trichlorophenol. <i>Ceramics International</i> , 2015 , 41, 3355-3364	5.1	116
541	Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye. <i>Ceramics International</i> , 2015 , 41, 7773-7782	5.1	112
540	Facile synthesis and optical properties of Co3O4 nanostructures by the microwave route. Superlattices and Microstructures, 2011 , 49, 416-421	2.8	110
539	CuO nanosheets as potential scaffolds for gas sensing applications. <i>Sensors and Actuators B: Chemical</i> , 2017 , 250, 24-31	8.5	108
538	Photocatalysis from UV/Vis to Near-Infrared Light: Towards Full Solar-Light Spectrum Activity. <i>ChemCatChem</i> , 2015 , 7, 559-573	5.2	108
537	Ultra-sensitive hydrazine chemical sensor based on high-aspect-ratio ZnO nanowires. <i>Talanta</i> , 2009 , 77, 1376-80	6.2	108
536	Catalyst-free synthesis of ZnO nanowires on Si by oxidation of Zn powders. <i>Journal of Crystal Growth</i> , 2005 , 277, 471-478	1.6	108
535	Metal organic framework (MOF) porous octahedral nanocrystals of Cu-BTC: Synthesis, properties and enhanced adsorption properties. <i>Materials Research Bulletin</i> , 2019 , 109, 124-133	5.1	105
534	Ethanol chemi-sensor: Evaluation of structural, optical and sensing properties of CuO nanosheets. <i>Materials Letters</i> , 2011 , 65, 1400-1403	3.3	105
533	Development of amperometric glucose biosensor based on glucose oxidase co-immobilized with multi-walled carbon nanotubes at low potential. <i>Sensors and Actuators B: Chemical</i> , 2009 , 137, 327-333	8.5	103

532	Polypyrrole-poly(3,4-ethylenedioxythiophene)-Ag (PPy-PEDOT-Ag) nanocomposite films for label-free electrochemical DNA sensing. <i>Biosensors and Bioelectronics</i> , 2013 , 47, 133-40	11.8	101
531	Flower-shaped ZnO nanostructures obtained by cyclic feeding chemical vapour deposition: structural and optical properties. <i>Nanotechnology</i> , 2005 , 16, 2462-8	3.4	100
530	Chemical Sensing Applications of ZnO Nanomaterials. <i>Materials</i> , 2018 , 11,	3.5	97
529	Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles. <i>Journal of Alloys and Compounds</i> , 2013 , 581, 392-397	5.7	93
528	Large-scale synthesis of ZnO balls made of fluffy thin nanosheets by simple solution process: structural, optical and photocatalytic properties. <i>Journal of Colloid and Interface Science</i> , 2011 , 363, 521	<u>-8</u> .3	93
527	Growth and properties of Ag-doped ZnO nanoflowers for highly sensitive phenyl hydrazine chemical sensor application. <i>Talanta</i> , 2012 , 93, 257-63	6.2	89
526	Potassium Hydroxide Activated and Nitrogen Doped Graphene with Enhanced Supercapacitive Behavior. <i>Science of Advanced Materials</i> , 2018 , 10, 937-949	2.3	88
525	Ce-doped ZnO nanorods for the detection of hazardous chemical. <i>Sensors and Actuators B: Chemical</i> , 2012 , 173, 72-78	8.5	87
524	Well-crystalline porous ZnO-SnO2 nanosheets: an effective visible-light driven photocatalyst and highly sensitive smart sensor material. <i>Talanta</i> , 2015 , 131, 490-8	6.2	84
523	Development of highly sensitive and selective ethanol sensor based on lance-shaped CuO nanostructures. <i>Materials and Design</i> , 2016 , 105, 16-24	8.1	84
522	The visible light-driven photocatalytic degradation of Alizarin red S using Bi-doped TiO2 nanoparticles. <i>New Journal of Chemistry</i> , 2014 , 38, 3127-3136	3.6	82
521	Ultra-high sensitive ammonia chemical sensor based on ZnO nanopencils. <i>Talanta</i> , 2012 , 89, 155-61	6.2	81
520	ZnO nanonails: synthesis and their application as glucose biosensor. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 3216-21	1.3	80
519	Solvent-free graphene liquids: Promising candidates for lubricants without the base oil. <i>Journal of Colloid and Interface Science</i> , 2019 , 542, 159-167	9.3	79
518	Removal of water contaminants by iron oxide nanomaterials. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 627-43	1.3	79
517	Growth of Comb-like ZnO Nanostructures for Dye-sensitized Solar Cells Applications. <i>Nanoscale Research Letters</i> , 2009 , 4, 1004-1008	5	78
516	Metal clusters activated SnO2 thin film for low level detection of NH3 gas. <i>Sensors and Actuators B: Chemical</i> , 2014 , 194, 410-418	8.5	77
515	Synthesis, characterization and acetone gas sensing applications of Ag-doped ZnO nanoneedles. <i>Ceramics International</i> , 2017 , 43, 6765-6770	5.1	76

(2019-2013)

514	ZnO nanoparticles induces cell death in malignant human T98G gliomas, KB and non-malignant HEK cells. <i>Journal of Biomedical Nanotechnology</i> , 2013 , 9, 1181-9	4	76
513	ZnO doped SnO2 nanoparticles heterojunction photo-catalyst for environmental remediation. <i>Journal of Alloys and Compounds</i> , 2015 , 653, 327-333	5.7	75
512	Growth and properties of well-crystalline cerium oxide (CeO2) nanoflakes for environmental and sensor applications. <i>Journal of Colloid and Interface Science</i> , 2015 , 454, 61-8	9.3	75
511	NiCo2O4 nanowire based flexible electrode materials for asymmetric supercapacitors. <i>New Journal of Chemistry</i> , 2018 , 42, 7399-7406	3.6	74
510	Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation. <i>Nanotechnology</i> , 2007 , 18, 175606	3.4	74
509	Tungsten oxide (WO3) nanoparticles as scaffold for the fabrication of hydrazine chemical sensor. <i>Sensors and Actuators B: Chemical</i> , 2014 , 196, 231-237	8.5	73
508	Photocatalytic degradation of Alizarin Red S using simply synthesized ZnO nanoparticles. <i>Materials Letters</i> , 2013 , 106, 385-389	3.3	73
507	ZnO nanoparticles induce oxidative stress in Cloudman S91 melanoma cancer cells. <i>Journal of Biomedical Nanotechnology</i> , 2013 , 9, 441-9	4	73
506	Growth, properties and dye-sensitized solar cells applications of ZnO nanorods grown by low-temperature solution process. <i>Superlattices and Microstructures</i> , 2009 , 45, 529-534	2.8	73
505	Synthesis of CeO2InO nanoellipsoids as potential scaffold for the efficient detection of 4-nitrophenol. <i>Sensors and Actuators B: Chemical</i> , 2014 , 202, 1044-1050	8.5	71
504	Star-shaped ZnO nanostructures on silicon by cyclic feeding chemical vapor deposition. <i>Journal of Crystal Growth</i> , 2005 , 277, 479-484	1.6	71
503	Heterogeneous photocatalytic studies of analgesic and non-steroidal anti-inflammatory drugs. <i>Applied Catalysis A: General</i> , 2016 , 510, 134-155	5.1	70
502	Sonophotocatalytic degradation of methyl orange using ZnO nano-aggregates. <i>Journal of Alloys and Compounds</i> , 2015 , 629, 167-172	5.7	70
501	Growth of Highly c-Axis-Oriented ZnO Nanorods on ZnO/Glass Substrate: Growth Mechanism, Structural, and Optical Properties. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 14715-14720	3.8	70
500	CeO2ZnO hexagonal nanodisks: Efficient material for the degradation of direct blue 15 dye and its simulated dye bath effluent under solar light. <i>Journal of Alloys and Compounds</i> , 2015 , 620, 67-73	5.7	69
499	Fabrication and characterization of highly sensitive and selective sensors based on porous NiO nanodisks. <i>Sensors and Actuators B: Chemical</i> , 2018 , 259, 604-615	8.5	69
498	A highly sensitive ammonia chemical sensor based on Fe2O3nanoellipsoids. <i>Journal Physics D: Applied Physics,</i> 2011 , 44, 425401	3	68
497	Recent Advances and Perspectives of Carbon-Based Nanostructures as Anode Materials for Li-ion Batteries. <i>Materials</i> , 2019 , 12,	3.5	67

496	TiO2 quantum dots for the photocatalytic degradation of indigo carmine dye. <i>Journal of Alloys and Compounds</i> , 2015 , 650, 193-198	5.7	67
495	Enhanced photocatalytic degradation of harmful dye and phenyl hydrazine chemical sensing using ZnO nanourchins. <i>Chemical Engineering Journal</i> , 2015 , 262, 588-596	14.7	66
494	Facile synthesis of CdS/TiO2 nanocomposite and their catalytic activity for ofloxacin degradation under visible illumination. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2018 , 360, 34-43	4.7	66
493	Hydrothermally grown ZnO nanoflowers for environmental remediation and clean energy applications. <i>Materials Research Bulletin</i> , 2012 , 47, 2407-2414	5.1	66
492	Photocatalytic degradation of the antibiotic levofloxacin using highly crystalline TiO2 nanoparticles. <i>New Journal of Chemistry</i> , 2014 , 38, 3220-3226	3.6	65
491	High performance cholesterol sensor based on ZnO nanotubes grown on Si/Ag electrodes. <i>Electrochemistry Communications</i> , 2014 , 38, 4-7	5.1	64
490	Synthesis and Characterization of Iron Oxide Nanoparticles for Phenyl Hydrazine Sensor Applications. <i>Sensor Letters</i> , 2014 , 12, 97-101	0.9	63
489	Architecture-controlled synthesis of MxOy (M = Ni, Fe, Cu) microfibres from seaweed biomass for high-performance lithium ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 22708-22715	13	62
488	2D Sn-doped ZnO ultrathin nanosheet networks for enhanced acetone gas sensing application. <i>Ceramics International</i> , 2017 , 43, 2418-2423	5.1	62
487	MgO polyhedral nanocages and nanocrystals based glucose biosensor. <i>Electrochemistry Communications</i> , 2009 , 11, 1353-1357	5.1	62
486	Highly sensitive p-nitrophenol chemical sensor based on crystalline \text{HMnO2 nanotubes.} New Journal of Chemistry, 2014 , 38, 4420-4426	3.6	61
485	Visible-light-driven photocatalytic and chemical sensing properties of SnS2 nanoflakes. <i>Talanta</i> , 2013 , 114, 183-90	6.2	61
484	Ag-doped ZnO nanoellipsoids: potential scaffold for photocatalytic and sensing applications. <i>Talanta</i> , 2015 , 137, 204-13	6.2	61
483	Precipitation Sequence of Middle Al Concentration Alloy Using the Inversion Algorithm and Microscopic Phase Field Model. <i>Science of Advanced Materials</i> , 2018 , 10, 1793-1804	2.3	61
482	Layered double hydroxide/graphene oxide hybrid incorporated polysulfone substrate for thin-film nanocomposite forward osmosis membranes. <i>RSC Advances</i> , 2016 , 6, 56599-56609	3.7	60
481	Zinc oxide nanostructure-based dye-sensitized solar cells. Journal of Materials Science, 2017, 52, 4743-4	47. 9 .5	59
480	Effect of annealing temperature on the properties and photocatalytic efficiencies of ZnO nanoparticles. <i>Journal of Alloys and Compounds</i> , 2015 , 648, 46-52	5.7	59
479	Removal of fluoroquinolone drug, levofloxacin, from aqueous phase over iron based MOFs, MIL-100(Fe). <i>Journal of Solid State Chemistry</i> , 2020 , 281, 121029	3.3	59

(2018-2016)

478	Morphology and chemical composition dependent synthesis and electrochemical properties of MnO2-based nanostructures for efficient hydrazine detection. <i>Sensors and Actuators B: Chemical</i> , 2016 , 224, 878-884	8.5	58
477	Three-Dimensional Crumpled Graphene-Based Nanosheets with Ultrahigh NO Gas Sensibility. <i>ACS Applied Materials & Applied & App</i>	9.5	58
476	Efficient photocatalytic degradation of brilliant green using Sr-doped TiO2 nanoparticles. <i>Ceramics International</i> , 2015 , 41, 3533-3540	5.1	58
475	Graphitic carbon nitride (g-C3N4) coated titanium oxide nanotube arrays with enhanced photo-electrochemical performance. <i>Dalton Transactions</i> , 2016 , 45, 12702-9	4.3	57
474	Sno2 quantum dots as novel platform for electrochemical sensing of cadmium. <i>Electrochimica Acta</i> , 2015 , 169, 97-102	6.7	56
473	Bioinspired design of AgNPs embedded silk sericin-based sponges for efficiently combating bacteria and promoting wound healing. <i>Materials and Design</i> , 2019 , 180, 107940	8.1	56
472	ZnO nanostructured thin films: Depositions, properties and applications areview. <i>Materials Express</i> , 2015 , 5, 3-23	1.3	55
471	CoO nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors. <i>Dalton Transactions</i> , 2018 , 47, 5687-5694	4.3	55
470	Synthesis of polypropylene/Mg3Al& (X = CO32[INO3[ICl[ISO42]ILDH nanocomposites using a solvent mixing method: thermal and melt rheological properties. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9928	13	55
469	Rapid synthesis and dye-sensitized solar cell applications of hexagonal-shaped ZnO nanorods. <i>Electrochimica Acta</i> , 2009 , 54, 5358-5362	6.7	54
468	Enhanced visible light driven photocatalytic application of Ag 2 O decorated ZnO nanorods heterostructures. <i>Separation and Purification Technology</i> , 2017 , 183, 341-349	8.3	53
467	Fabrication and characterization of highly sensitive and selective arsenic sensor based on ultra-thin graphene oxide nanosheets. <i>Sensors and Actuators B: Chemical</i> , 2016 , 227, 29-34	8.5	53
466	Low-temperature synthesis of ⊞e2O3 hexagonal nanoparticles for environmental remediation and smart sensor applications. <i>Talanta</i> , 2013 , 116, 1060-6	6.2	53
465	Supramolecular fabrication of multilevel graphene-based gas sensors with high NO2 sensibility. <i>Nanoscale</i> , 2015 , 7, 10259-66	7.7	52
464	Sunlight-driven photocatalytic degradation of non-steroidal anti-inflammatory drug based on TiOII quantum dots. <i>Journal of Colloid and Interface Science</i> , 2015 , 459, 257-263	9.3	52
463	Hybrid ZnO/ZnS nanoforests as the electrode materials for high performance supercapacitor application. <i>Dalton Transactions</i> , 2015 , 44, 2409-15	4.3	52
462	Reduced graphene oxide-CdS heterostructure: An efficient fluorescent probe for the sensing of Ag(I) and sunset yellow and a visible-light responsive photocatalyst for the degradation of levofloxacin drug in aqueous phase. <i>Applied Catalysis B: Environmental</i> , 2019 , 245, 143-158	21.8	52
461	Solar light driven photocatalytic degradation of levofloxacin using TiO2/carbon-dot nanocomposites. <i>New Journal of Chemistry</i> , 2018 , 42, 7445-7456	3.6	51

460	Ultra-high sensitive hydrazine chemical sensor based on low-temperature grown ZnO nanoparticles. <i>Electrochimica Acta</i> , 2012 , 69, 128-133	6.7	51
459	Structural and optical properties of CuO layered hexagonal discs synthesized by a low-temperature hydrothermal process. <i>Journal Physics D: Applied Physics</i> , 2011 , 44, 155405	3	51
458	Ultraviolet-Emitting ZnO Nanostructures on Steel Alloy Substrates: Growth and Properties. <i>Crystal Growth and Design</i> , 2008 , 8, 2741-2747	3.5	51
457	Visible-light driven photocatalytic degradation of brilliant green dye based on cobalt tungstate (CoWO 4) nanoparticles. <i>Materials Chemistry and Physics</i> , 2018 , 211, 335-342	4.4	50
456	Enhanced Photocatalytic Activity of B, N-Codoped TiOlby a New Molten Nitrate Process. <i>Journal of Nanoscience and Nanotechnology</i> , 2019 , 19, 839-849	1.3	50
455	Photoluminescent C-dots: An overview on the recent development in the synthesis, physiochemical properties and potential applications. <i>Journal of Alloys and Compounds</i> , 2018 , 748, 818-853	5.7	49
454	Mimicking a Dog's Nose: Scrolling Graphene Nanosheets. <i>ACS Nano</i> , 2018 , 12, 2521-2530	16.7	49
453	Microwave assisted rapid growth of Mg(OH)2 nanosheet networks for ethanol chemical sensor application. <i>Journal of Alloys and Compounds</i> , 2012 , 519, 4-8	5.7	49
452	ZnO nanorods based hydrazine sensors. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 4686-91	1.3	49
451	Perforated Co3O4 nanoneedles assembled in chrysanthemum-like Co3O4 structures for ultra-high sensitive hydrazine chemical sensor. <i>Sensors and Actuators B: Chemical</i> , 2016 , 235, 457-465	8.5	49
450	Highly sensitive hydrazine chemical sensor based on mono-dispersed rapidly synthesized PEG-coated ZnS nanoparticles. <i>Talanta</i> , 2011 , 85, 2411-6	6.2	48
449	Hydrothermally regulating phase composition of TiO2 nanocrystals toward high photocatalytic activity. <i>Journal of Alloys and Compounds</i> , 2021 , 850, 156653	5.7	48
448	Two-dimensional ytterbium oxide nanodisks based biosensor for selective detection of urea. <i>Biosensors and Bioelectronics</i> , 2017 , 98, 254-260	11.8	47
447	Facile synthesis and photocatalytic activity of cocoon-shaped CuO nanostructures. <i>Materials Letters</i> , 2015 , 156, 138-141	3.3	47
446	Visible light driven photocatalytic degradation of fluoroquinolone levofloxacin drug using Ag2O/TiO2 quantum dots: a mechanistic study and degradation pathway. <i>New Journal of Chemistry</i> , 2017 , 41, 12079-12090	3.6	47
445	Advances in Responsively Conductive Polymer Composites and Sensing Applications. <i>Polymer Reviews</i> , 2021 , 61, 157-193	14	47
444	Supramolecularly Modified Graphene for Ultrafast Responsive and Highly Stable Humidity Sensor. Journal of Physical Chemistry C, 2015 , 119, 28640-28647	3.8	46
443	Rapid Solar-Light Driven Superior Photocatalytic Degradation of Methylene Blue Using MoSEZnO Heterostructure Nanorods Photocatalyst. <i>Materials</i> , 2018 , 11,	3.5	46

442	Surface functionalized selenium nanoparticles for biomedical applications. <i>Journal of Biomedical Nanotechnology</i> , 2014 , 10, 3004-42	4	45	
441	Fabrication of Highly Sensitive Non-Enzymatic Glucose Biosensor Based on ZnO Nanorods. <i>Science of Advanced Materials</i> , 2011 , 3, 901-906	2.3	45	
440	NiO nanodisks: Highly efficient visible-light driven photocatalyst, potential scaffold for seed germination of Vigna Radiata and antibacterial properties. <i>Journal of Cleaner Production</i> , 2018 , 190, 56.	3-576	44	
439	Pulse laser deposited nanostructured ZnO thin films: a review. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 1911-30	1.3	44	
438	Synthesis of ZnO nanowires on Si substrate by thermal evaporation method without catalyst: Structural and optical properties. <i>Korean Journal of Chemical Engineering</i> , 2006 , 23, 499-504	2.8	44	
437	Ni64+Sn132 fusion within the density-constrained time-dependent Hartree-Fock formalism. <i>Physical Review C</i> , 2007 , 76,	2.7	44	
436	Structural and optical properties of ZnO micro-spheres and cages by oxidation of metallic Zn powder. <i>Superlattices and Microstructures</i> , 2006 , 39, 238-246	2.8	44	
435	Impact of organic interlayer anions on the CO2 adsorption performance of Mg-Al layered double hydroxides derived mixed oxides. <i>Journal of Energy Chemistry</i> , 2017 , 26, 346-353	12	43	
434	Zinc oxide nanocones as potential scaffold for the fabrication of ultra-high sensitive hydrazine chemical sensor. <i>Ceramics International</i> , 2015 , 41, 3101-3108	5.1	43	
433	Hierarchical Fe3O4 CoreBhell Layered Double Hydroxide Composites as Magnetic Adsorbents for Anionic Dye Removal from Wastewater. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 4182-419	1 ^{2.3}	43	
432	Ultraviolet-emitting javelin-like ZnO nanorods by thermal evaporation: Growth mechanism, structural and optical properties. <i>Chemical Physics Letters</i> , 2007 , 440, 110-115	2.5	43	
431	Solar light driven photocatalytic degradation of Ofloxacin based on ultra-thin bismuth molybdenum oxide nanosheets. <i>Materials Research Bulletin</i> , 2018 , 99, 359-366	5.1	43	
430	Highly sensitive optical ammonia gas sensor based on Sn Doped V2O5 Nanoparticles. <i>Materials Research Bulletin</i> , 2018 , 108, 266-274	5.1	43	
429	Cross-linking of dialdehyde carboxymethyl cellulose with silk sericin to reinforce sericin film for potential biomedical application. <i>Carbohydrate Polymers</i> , 2019 , 212, 403-411	10.3	42	
428	Europium-doped gadolinium oxide nanoparticles: A potential photoluminescencent probe for highly selective and sensitive detection of Fe3+ and Cr3+ ions. <i>Sensors and Actuators B: Chemical</i> , 2017 , 243, 579-588	8.5	41	
427	Visible-light-driven photocatalytic properties of self assembled cauliflower-like AgCl/ZnO hierarchical nanostructures. <i>Journal of Molecular Catalysis A</i> , 2015 , 408, 189-201		41	
426	Rose-like CuO nanostructures for highly sensitive glucose chemical sensor application. <i>Ceramics International</i> , 2015 , 41, 9468-9475	5.1	41	
425	Ultra-sensitive ethanol sensor based on rapidly synthesized Mg(OH)2 hexagonal nanodisks. <i>Sensors and Actuators B: Chemical</i> , 2012 , 166-167, 97-102	8.5	41	

424	CuO Nanocubes Based Highly-Sensitive 4-Nitrophenol Chemical Sensor. <i>Science of Advanced Materials</i> , 2012 , 4, 893-900	2.3	41
423	Ionic liquid and surfactant functionalized ZnO nanoadsorbent for Recyclable Proficient Adsorption of toxic dyes from waste water. <i>Journal of Molecular Liquids</i> , 2016 , 224, 1294-1304	6	40
422	Zinc Oxide Nanomaterials for Photocatalytic Degradation of Methyl Orange: A Review. <i>Nanoscience and Nanotechnology Letters</i> , 2014 , 6, 631-650	0.8	40
421	Development of Highly Sensitive and Selective Cholesterol Biosensor Based on Cholesterol Oxidase Co-Immobilized with Fe2O3 Micro-Pine Shaped Hierarchical Structures. <i>Electrochimica Acta</i> , 2014 , 135, 396-403	6.7	39
420	Adsorption of acid red from dye wastewater by Zn2Al-NO3 LDHs and the resource of adsorbent sludge as nanofiller for polypropylene. <i>Journal of Alloys and Compounds</i> , 2014 , 587, 99-104	5.7	38
419	A robust enzymeless glucose sensor based on CuO nanoseed modified electrodes. <i>Dalton Transactions</i> , 2015 , 44, 12488-92	4.3	38
418	Growth mechanism and optical properties of aligned hexagonal ZnO nanoprisms synthesized by noncatalytic thermal evaporation. <i>Inorganic Chemistry</i> , 2008 , 47, 4088-94	5.1	38
417	Chemical and Pathogenic Cleanup of Wastewater Using Surface-Functionalized CeO2 Nanoparticles. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 6803-6816	8.3	37
416	Hydrothermal formation of N/Ti codoped multiphasic (brookite-anatase-rutile) TiO heterojunctions with enhanced visible light driven photocatalytic performance. <i>Dalton Transactions</i> , 2017 , 46, 15727-15	57 3 3	37
415	Non-catalytic growth of high aspect-ratio ZnO nanowires by thermal evaporation. <i>Solid State Communications</i> , 2006 , 139, 447-451	1.6	37
414	Sm2O3-doped ZnO beech fern hierarchical structures for nitroaniline chemical sensor. <i>Ceramics International</i> , 2016 , 42, 16505-16511	5.1	37
413	Polypropylene/Mg3AlEartrazine LDH nanocomposites with enhanced thermal stability, UV absorption, and rheological properties. <i>RSC Advances</i> , 2013 , 3, 26017	3.7	36
412	Adsorption studies of cationic, anionic and azo-dyes via monodispersed Fe3O4 nanoparticles. Journal of Nanoscience and Nanotechnology, 2013 , 13, 3240-5	1.3	36
411	Synthesis and characterizations of Cd-doped ZnO multipods for environmental remediation application. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 8453-8	1.3	36
410	High performance hybrid supercapacitor based on hierarchical MoS2/Ni3S2 metal chalcogenide. <i>Chinese Chemical Letters</i> , 2019 , 30, 1105-1110	8.1	36
409	Custom designed metal anchored SnO2 sensor for IH2 detection. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 4597-4609	6.7	35
408	Efficient removal of organic dyes molecules by grain-like 日 e2O3 nanostructures under visible light irradiation. <i>Vacuum</i> , 2018 , 150, 35-40	3.7	35
407	Bismuth sulfide (Bi2S3) nanotubes decorated TiO2 nanoparticles heterojunction assembly for enhanced solar light driven photocatalytic activity. <i>Ceramics International</i> , 2016 , 42, 17551-17557	5.1	35

406	ZnO nanocapsules for photocatalytic degradation of thionine. <i>Materials Letters</i> , 2012 , 81, 239-241	3.3	35	
405	High-yield synthesis of well-crystalline alpha-Fe2O3 nanoparticles: structural, optical and photocatalytic properties. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 3474-80	1.3	35	
404	Optimization of Epoxypinane Synthesis by Silicotungstic Acid Supported on SBA-15 Catalyst Using Response Surface Methodology. <i>Science of Advanced Materials</i> , 2019 , 11, 699-707	2.3	35	
403	Low-temperature growth and properties of flower-shaped - Ni(OH)2 and NiO structures composed of thin nanosheets networks. <i>Superlattices and Microstructures</i> , 2008 , 44, 216-222	2.8	34	
402	Effect of graphene oxide ratio on the cell adhesion and growth behavior on a graphene oxide-coated silicon substrate. <i>Scientific Reports</i> , 2016 , 6, 33835	4.9	34	
401	Microwave-assisted synthesis of ZnO doped CeO2 nanoparticles as potential scaffold for highly sensitive nitroaniline chemical sensor. <i>Ceramics International</i> , 2016 , 42, 11562-11567	5.1	34	
400	Highly-sensitive and selective detection of hydrazine at gold electrode modified with PEG-coated CdS nanoparticles. <i>Sensors and Actuators B: Chemical</i> , 2013 , 188, 372-377	8.5	33	
399	Temperature-dependant non-catalytic growth of ultraviolet-emitting ZnO nanostructures on silicon substrate by thermal evaporation process. <i>Journal of Alloys and Compounds</i> , 2008 , 463, 516-521	5.7	32	
398	Evaluation of novel indigenous fungal consortium for enhanced bioremediation of heavy metals from contaminated sites. <i>Environmental Technology and Innovation</i> , 2020 , 20, 101050	7	32	
397	Recent advances in nano-photocatalysts for organic synthesis. <i>Arabian Journal of Chemistry</i> , 2019 , 12, 4550-4578	5.9	32	
396	Fluorescent spongy carbon nanoglobules derived from pineapple juice: A potential sensing probe for specific and selective detection of chromium (VI) ions. <i>Ceramics International</i> , 2017 , 43, 7011-7019	5.1	31	
395	BiWO/C-Dots/TiO: A Novel Z-Scheme Photocatalyst for the Degradation of Fluoroquinolone Levofloxacin from Aqueous Medium. <i>Nanomaterials</i> , 2020 , 10,	5.4	31	
394	Ag-Doped ZnO Nanoparticles for Enhanced Ethanol Gas Sensing Application. <i>Journal of Nanoscience and Nanotechnology</i> , 2018 , 18, 3557-3562	1.3	31	
393	Applications of ZnO nanoflowers as antimicrobial agents for Escherichia coli and enzyme-free glucose sensor. <i>Journal of Biomedical Nanotechnology</i> , 2013 , 9, 1794-802	4	31	
392	Bi2O2CO3 nanoplates: Fabrication and characterization of highly sensitive and selective cholesterol biosensor. <i>Journal of Alloys and Compounds</i> , 2016 , 683, 433-438	5.7	31	
391	Toward a high performance asymmetric hybrid capacitor by electrode optimization. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 2824-2831	6.8	30	
390	Fabrication and characterization of a highly sensitive hydroquinone chemical sensor based on iron-doped ZnO nanorods. <i>Dalton Transactions</i> , 2015 , 44, 21081-7	4.3	30	
389	Hierarchical WO3 nanostructures assembled by nanosheets and their applications in wastewater purification. <i>Journal of Alloys and Compounds</i> , 2016 , 689, 570-574	5.7	30	

388	Template-free growth of well-crystalline Fe2O3 nanopeanuts with enhanced visible-light driven photocatalytic properties. <i>Journal of Colloid and Interface Science</i> , 2015 , 457, 345-52	9.3	29
387	Volumetric and Conductance Studies of Cetyltrimethyl Ammonium Bromide in Aqueous Glycine. <i>Journal of Solution Chemistry</i> , 2013 , 42, 634-656	1.8	29
386	Conductance, apparent molar volume and compressibility studies of cetyltrimethylammonium bromide in aqueous solution of leucine. <i>Journal of Molecular Liquids</i> , 2012 , 175, 103-110	6	29
385	Growth and structural properties of CuO urchin-like and sheet-like structures prepared by simple solution process. <i>Materials Letters</i> , 2008 , 62, 1659-1662	3.3	29
384	Solid-state synthesis of Ag-doped PANI nanocomposites for their end-use as an electrochemical sensor for hydrogen peroxide and dopamine. <i>Electrochimica Acta</i> , 2020 , 363, 137158	6.7	29
383	Direct in situ synthesis of Fe2O3-codoped N-doped TiO2 nanoparticles with enhanced photocatalytic and photo-electrochemical properties. <i>Journal of Alloys and Compounds</i> , 2017 , 705, 89-9	7 5.7	28
382	Sb2O3InO nanospindles: A potential material for photocatalytic and sensing applications. <i>Ceramics International</i> , 2015 , 41, 5429-5438	5.1	28
381	Solar light driven enhanced photocatalytic degradation of brilliant green dye based on ZnS quantum dots. <i>Superlattices and Microstructures</i> , 2017 , 103, 365-375	2.8	28
380	Utilization of carbon nanotubes for the removal of rhodamine B dye from aqueous solutions. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 4331-6	1.3	28
379	Optical and field emission properties of single-crystalline aligned ZnO nanorods grown on aluminium substrate. <i>Journal Physics D: Applied Physics</i> , 2008 , 41, 065412	3	28
378	Cauliflower-shaped ZnO nanomaterials for electrochemical sensing and photocatalytic applications. <i>Electrochimica Acta</i> , 2016 , 222, 463-472	6.7	27
377	Biosynthesis and Characterization of Silver Nanoparticles from Methanol Leaf Extract of Cassia didymobotyra and Assessment of Their Antioxidant and Antibacterial Activities. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 9818-23	1.3	27
376	Low-temperature growth of well-crystalline Co3O4 hexagonal nanodisks as anode material for lithium-ion batteries. <i>Electrochimica Acta</i> , 2011 , 56, 8534-8538	6.7	27
375	The synthesis of ZnO nanowires and their subsequent use in high-current field-effect transistors formed by dielectrophoresis alignment. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2008 , 40, 866-872	3	27
374	Efficient H2 gas sensor based on 2D SnO2 disks: Experimental and theoretical studies. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 26388-26401	6.7	27
373	Preparation and enhanced properties of Fe3O4 nanoparticles reinforced polyimide nanocomposites. <i>Superlattices and Microstructures</i> , 2015 , 85, 305-320	2.8	26
372	Synthesis and characterization of zinc oxide nanorods on silicon for the fabrication of p-Si/n-ZnO heterojunction diode. <i>Journal of Alloys and Compounds</i> , 2010 , 508, 375-379	5.7	26
371	Reduced graphene/nanostructured cobalt oxide nanocomposite for enhanced electrochemical performance of supercapacitor applications. <i>Journal of Colloid and Interface Science</i> , 2020 , 558, 68-77	9.3	26

(2012-2015)

370	A comparison on the performance of zinc oxide and hematite nanoparticles for highly selective and sensitive detection of para-nitrophenol. <i>Journal of Applied Electrochemistry</i> , 2015 , 45, 253-261	2.6	25	
369	1-butyl-3-methylimidazolium tetrafluoroborate functionalized ZnO nanoparticles for removal of toxic organic dyes. <i>Journal of Molecular Liquids</i> , 2016 , 220, 1013-1021	6	25	
368	Significantly enhanced mechanical and electrical properties of epoxy nanocomposites reinforced with low loading of polyaniline nanoparticles. <i>RSC Advances</i> , 2016 , 6, 21187-21192	3.7	25	
367	Surfactant functionalized tungsten oxide nanoparticles with enhanced photocatalytic activity. <i>Chemical Engineering Journal</i> , 2016 , 288, 423-431	14.7	25	
366	Na+ and K+-Exchanged Zirconium Phosphate (ZrP) as High-Temperature CO2 Adsorbents. <i>Science of Advanced Materials</i> , 2013 , 5, 469-474	2.3	25	
365	Visible-light-driven photocatalytic properties of simply synthesized ∃ron(III)oxide nanourchins. Journal of Colloid and Interface Science, 2015 , 451, 93-100	9.3	24	
364	Composite CdO-ZnO hexagonal nanocones: Efficient materials for photovoltaic and sensing applications. <i>Ceramics International</i> , 2018 , 44, 5017-5024	5.1	24	
363	Synthesis of cadmium sulfide nanosheets for smart photocatalytic and sensing applications. <i>Ceramics International</i> , 2016 , 42, 6601-6609	5.1	24	
362	Facile synthesis of SnO2 hollow microspheres composed of nanoparticles and their remarkable photocatalytic performance. <i>Materials Research Bulletin</i> , 2016 , 74, 284-290	5.1	24	
361	Ag/CeO2 nanostructured materials for enhanced photocatalytic and antibacterial applications. <i>Ceramics International</i> , 2019 , 45, 20509-20517	5.1	24	
360	Influence of Titanium Oxide Nanoparticles on the Physical and Thermomechanical Behavior of Poly Methyl Methacrylate (PMMA): A Denture Base Resin. <i>Science of Advanced Materials</i> , 2017 , 9, 938-944	2.3	24	
359	Nickel Powders Modified Nanocoating Strengthened Iron Plates by Surface Mechanical Attrition Alloy and Heat Treatment. <i>Science of Advanced Materials</i> , 2018 , 10, 1063-1072	2.3	24	
358	2D Nanomaterial-Based Surface Plasmon Resonance Sensors for Biosensing Applications. <i>Micromachines</i> , 2020 , 11,	3.3	24	
357	Recycling of Waste Poly(ethylene terephthalate) Bottles by Alkaline Hydrolysis and Recovery of Pure Nanospindle-Shaped Terephthalic Acid. <i>Journal of Nanoscience and Nanotechnology</i> , 2018 , 18, 580	04 ¹ 5 ² 809	9 ²³	
356	Physico-chemical studies of oppositely charged protein durfactant system in aqueous solutions: Sodium dodecyl sulphate (SDS) Lysozyme. Fluid Phase Equilibria, 2013, 337, 39-46	2.5	23	
355	A Highly-Sensitive Picric Acid Chemical Sensor Based on ZnO Nanopeanuts. <i>Materials</i> , 2017 , 10,	3.5	23	
354	Utilization of ZnO nanocones for the photocatalytic degradation of acridine orange. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 4061-6	1.3	23	
353	Platinum quantum dots and their cytotoxic effect towards myoblast cancer cells (C2C12). <i>Journal of Biomedical Nanotechnology</i> , 2012 , 8, 424-31	4	23	

352	Chelating Behavior of 14-Membered Schiff Base Macrocycles and Their Transition Metal Chelates. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2004 , 34, 145-161		23
351	Silver doped manganese oxide-carbon nanotube nanocomposite for enhanced dye-sequestration: Isotherm studies and RSM modelling approach. <i>Ceramics International</i> , 2020 , 46, 10309-10319	5.1	23
350	Platinum nanoparticles decorated carbon nanotubes for highly sensitive 2-nitrophenol chemical sensor. <i>Ceramics International</i> , 2016 , 42, 9257-9263	5.1	22
349	Lanthanum-promoted copper-based hydrotalcites derived mixed oxides for NOx adsorption, soot combustion and simultaneous NOx-soot removal. <i>Materials Research Bulletin</i> , 2014 , 51, 119-127	5.1	22
348	Non-catalytic growth of high-aspect-ratio Sb-doped ZnO nanowires by simple thermal evaporation process: Structural and optical properties. <i>Journal of Alloys and Compounds</i> , 2009 , 479, 290-293	5.7	22
347	Square disks-based crossed architectures of SnO2 for ethanol gas sensing applicationsAn experimental and theoretical investigation. <i>Sensors and Actuators B: Chemical</i> , 2020 , 304, 127352	8.5	22
346	Delaminated Layered Double Hydroxide Nanosheets as an Efficient Vector for DNA Delivery. Journal of Biomedical Nanotechnology, 2016 , 12, 922-33	4	22
345	BiF3 octahedrons: A potential natural solar light active photocatalyst for the degradation of Rhodamine B dye in aqueous phase. <i>Materials Research Bulletin</i> , 2019 , 112, 376-383	5.1	22
344	Synthesis and characterizations of luminescent copper oxide nanoparticles: Toxicological profiling and sensing applications. <i>Ceramics International</i> , 2019 , 45, 15025-15035	5.1	21
343	Fe-doped ZnO nanoellipsoids for enhanced photocatalytic and highly sensitive and selective picric acid sensor. <i>Materials Research Bulletin</i> , 2018 , 102, 282-288	5.1	21
342	Effective modified electrode of poly (1-naphthylamine) nanoglobules for ultra-high sensitive ethanol chemical sensor. <i>Chemical Engineering Journal</i> , 2013 , 229, 267-275	14.7	21
341	Spruce branched Fe2O3 nanostructures as potential scaffolds for a highly sensitive and selective glucose biosensor. <i>New Journal of Chemistry</i> , 2014 , 38, 5873-5879	3.6	21
340	Non-Enzymatic Glucose Sensor Based on Well-Crystallized ZnO Nanoparticles. <i>Science of Advanced Materials</i> , 2012 , 4, 994-1000	2.3	21
339	Fabrication and in-vitro biocompatibility of freeze-dried CTS-nHA and CTS-nBG scaffolds for bone regeneration applications. <i>International Journal of Biological Macromolecules</i> , 2020 , 149, 1-10	7.9	21
338	An efficient chemical sensor based on CeO2 nanoparticles for the detection of acetylacetone chemical. <i>Journal of Electroanalytical Chemistry</i> , 2020 , 864, 114089	4.1	21
337	Enhancement of charge transfer between graphene and donor-Eacceptor molecule for ultrahigh sensing performance. <i>Nanoscale</i> , 2017 , 9, 16273-16280	7.7	20
336	Biogenic Synthesis, Characterization and Evaluation of Silver Nanoparticles from JX556221 Against Human Colon Cancer Cell Line HT-29. <i>Journal of Nanoscience and Nanotechnology</i> , 2018 , 18, 3673-3681	1.3	20
335	A Novel AgNPs/Sericin/Agar Film with Enhanced Mechanical Property and Antibacterial Capability. <i>Molecules</i> , 2018 , 23,	4.8	20

(2015-2015)

334	Morphology-dependent performance of Mg3AlfO3 layered double hydroxide as a nanofiller for polypropylene nanocomposites. <i>RSC Advances</i> , 2015 , 5, 51900-51911	3.7	20	
333	Photocatalytic degradation of direct red-23 dye with ZnO nanoparticles. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 7161-6	1.3	20	
332	Glucose sensor based on copper oxide nanostructures. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 3569-74	1.3	20	
331	Time dependent growth of ZnO nanoflowers with enhanced field emission properties. <i>Ceramics International</i> , 2016 , 42, 13215-13222	5.1	20	
330	Fabrication and characterization of CuO nanoplates based sensor device for ethanol gas sensing application. <i>Chemical Physics Letters</i> , 2021 , 763, 138204	2.5	20	
329	Nanocuboidal-shaped zirconium based metal organic framework for the enhanced adsorptive removal of nonsteroidal anti-inflammatory drug, ketorolac tromethamine, from aqueous phase. <i>New Journal of Chemistry</i> , 2018 , 42, 1921-1930	3.6	20	
328	Synthesis and Characterization of CuO Nanodisks for High-Sensitive and Selective Ethanol Gas Sensor Applications. <i>Journal of Nanoscience and Nanotechnology</i> , 2017 , 17, 1455-459	1.3	19	
327	Nitroaniline chemi-sensor based on bitter gourd shaped ytterbium oxide (Yb2O3) doped zinc oxide (ZnO) nanostructures. <i>Ceramics International</i> , 2019 , 45, 13825-13831	5.1	19	
326	Applications of Carbon Dots in Nanomedicine. Journal of Biomedical Nanotechnology, 2017, 13, 591-637	7 4	19	
325	Fe2O3/rGO nanospindles as electrode materials for supercapacitors with long cycle life. <i>Materials Research Bulletin</i> , 2018 , 107, 391-396	5.1	19	
324	Growth and optical properties of large-quantity single-crystalline ZnO rods by thermal evaporation. <i>Journal Physics D: Applied Physics</i> , 2007 , 40, 3478-3484	3	19	
323	Well-Crystalline ZnO Nanostructures for the Removal of Acridine Orange and Coomassie Brilliant Blue R-250 Hazardous Dyes. <i>Science of Advanced Materials</i> , 2013 , 5, 1886-1894	2.3	19	
322	Highly sensitive and selective non-enzymatic monosaccharide and disaccharide sugar sensing based on carbon paste electrodes modified with perforated NiO nanosheets. <i>New Journal of Chemistry</i> , 2018 , 42, 964-973	3.6	19	
321	Growth and formation mechanism of sea urchin-like ZnO nanostructures on Si. <i>Korean Journal of Chemical Engineering</i> , 2005 , 22, 489-493	2.8	18	
320	Bismuth Sulphide (Bi2S3) Nanotubes as an Efficient Photocatalyst for Methylene Blue Dye Degradation. <i>Nanoscience and Nanotechnology Letters</i> , 2016 , 8, 266-272	0.8	18	
319	Superb sono-adsorption and energy storage potential of multifunctional Ag-Biochar composite. <i>Journal of Alloys and Compounds</i> , 2019 , 785, 240-249	5.7	18	
318	Application of pristine and doped SnO nanoparticles as a matrix for agro-hazardous material (organophosphate) detection. <i>Scientific Reports</i> , 2017 , 7, 42510	4.9	17	
317	Zinc hydroxide/oxide and zinc hydroxy stannate photocatalysts as potential scaffolds for environmental remediation. <i>New Journal of Chemistry</i> , 2015 , 39, 4624-4630	3.6	17	

316	Large-quantity synthesis of ZnO hollow objects by thermal evaporation: Growth mechanism, structural and optical properties. <i>Applied Surface Science</i> , 2008 , 254, 3339-3346	6.7	17
315	Synthesis and Characterization of High Surface Area Flower-Like Ca-Containing Layered Double Hydroxides Mg3 Royald Cax Al1 Royald Cax Al1	2.3	17
314	All-Dry Transferred ReS Nanosheets for Ultrasensitive Room-Temperature NO Sensing under Visible Light Illumination. <i>ACS Sensors</i> , 2020 , 5, 3172-3181	9.2	17
313	VO2(M)@CeO2 core-shell nanospheres for thermochromic smart windows and photocatalytic applications. <i>Ceramics International</i> , 2020 , 46, 986-995	5.1	17
312	Effect of cerium ions in Ce-Doped ZnO nanostructures on their photocatalytic and picric acid chemical sensing. <i>Ceramics International</i> , 2021 , 47, 3089-3098	5.1	17
311	Cubic shaped hematite (日中203) micro-structures composed of stacked nanosheets for rapid ethanol sensor application. <i>Sensors and Actuators B: Chemical</i> , 2021 , 326, 128851	8.5	17
310	Fabrication of Sericin/Agrose Gel Loaded Lysozyme and Its Potential in Wound Dressing Application. <i>Nanomaterials</i> , 2018 , 8,	5.4	16
309	Effects of Graphene Oxide Modified Sizing Agents on Interfacial Properties of Carbon Fibers/Epoxy Composites. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 9807-11	1.3	16
308	Single ZnO nanobelt based field effect transistors (FETs). <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 5745-51	1.3	16
307	Sea-urchin-like ZnO nanostructures on Si by oxidation of Zn metal powders: Structural and optical properties. <i>Superlattices and Microstructures</i> , 2006 , 39, 145-152	2.8	16
306	Synthesis of ZnO nanowires on steel alloy substrate by thermal evaporation: Growth mechanism and structural and optical properties. <i>Korean Journal of Chemical Engineering</i> , 2006 , 23, 860-865	2.8	16
305	Recent Advances in Cellulose-Based Forward Osmosis Membrane. <i>Science of Advanced Materials</i> , 2015 , 7, 2182-2192	2.3	16
304	Bioremediation potential of novel fungal species isolated from wastewater for the removal of lead from liquid medium. <i>Environmental Technology and Innovation</i> , 2020 , 18, 100757	7	16
303	Visible-Light Driven Photocatalytic Degradation of Eosin Yellow (EY) Dye Based on NiO-WOI Nanoparticles. <i>Journal of Nanoscience and Nanotechnology</i> , 2020 , 20, 924-933	1.3	16
302	Ni Foam Substrates Modified with a ZnCo2O4 Nanowire-Coated Ni(OH)2 Nanosheet Electrode for Hybrid Capacitors and Electrocatalysts. <i>ACS Applied Nano Materials</i> , 2021 , 4, 5461-5468	5.6	16
301	A comprehensive review on selective catalytic reduction catalysts for NOx emission abatement from municipal solid waste incinerators. <i>Environmental Progress and Sustainable Energy</i> , 2016 , 35, 1061-	1089	16
300	ZnOBnO2 nanocubes for fluorescence sensing and dye degradation applications. <i>Ceramics International</i> , 2021 , 47, 6201-6210	5.1	16
299	Silica-Based Bioactive Glasses and Their Applications in Hard Tissue Regeneration: A Review. <i>Pharmaceuticals</i> , 2021 , 14,	5.2	16

(2020-2018)

298	The Influence of the Charge Compensating Anions of Layered Double Hydroxides (LDHs) in LDH-NS/Graphene Oxide Nanohybrid for COlCapture. <i>Journal of Nanoscience and Nanotechnology</i> , 2018 , 18, 2956-2964	1.3	16
297	Wastewater cleanup using Phlebia acerina fungi: An insight into mycoremediation. <i>Journal of Environmental Management</i> , 2018 , 228, 130-139	7.9	16
296	Synthesis of Pt/KCO/MgAlO-reduced graphene oxide hybrids as promising NO storage-reduction catalysts with superior catalytic performance. <i>Scientific Reports</i> , 2017 , 7, 42862	4.9	15
295	Rapid Growth of TiOlNanoflowers via Low-Temperature Solution Process: Photovoltaic and Sensing Applications. <i>Materials</i> , 2019 , 12,	3.5	15
294	Highly porous ZnO nanosheets self-assembled in rosette-like morphologies for dye-sensitized solar cell application. <i>New Journal of Chemistry</i> , 2015 , 39, 7961-7970	3.6	15
293	Supramolecular fabrication of polyelectrolyte-modified reduced graphene oxide for NO2 sensing applications. <i>Ceramics International</i> , 2015 , 41, 12130-12136	5.1	15
292	Dodecyl ethyl dimethyl ammonium bromide capped WO3 nanoparticles: efficient scaffolds for chemical sensing and environmental remediation. <i>Dalton Transactions</i> , 2015 , 44, 17251-60	4.3	15
291	Facile synthesis of hollow ZnS nanospheres for environmental remediation. <i>Materials Letters</i> , 2015 , 160, 271-274	3.3	15
290	A comparative multi-assay approach to study the toxicity behaviour of Eu2O3 nanoparticles. <i>Journal of Molecular Liquids</i> , 2018 , 269, 783-795	6	15
289	Erbium-doped fluorotellurite titanate glasses for near infrared broadband amplifiers. <i>Optical Materials</i> , 2018 , 83, 257-262	3.3	15
288	Development of an off-on selective fluorescent sensor for the detection of Fe3+ ions based on Schiff base and its Hirshfeld surface and DFT studies. <i>Journal of Molecular Liquids</i> , 2019 , 296, 111814	6	15
287	One-Step Fabrication of Pyranine Modified- Reduced Graphene Oxide with Ultrafast and Ultrahigh Humidity Response. <i>Scientific Reports</i> , 2017 , 7, 2713	4.9	15
286	In-Doped ZnO Hexagonal Stepped Nanorods and Nanodisks as Potential Scaffold for Highly-Sensitive Phenyl Hydrazine Chemical Sensors. <i>Materials</i> , 2017 , 10,	3.5	15
285	High Electrochemical Li Intercalation in Titanate Nanotubes. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 14034-14039	3.8	15
284	Structural and optical properties of ZnO nanostructures grown on silicon substrate by thermal evaporation process. <i>Materials Letters</i> , 2008 , 62, 167-171	3.3	15
283	Effect of Temperature on Micellar Properties of Sodium Dodecyl Sulfate in Aqueous Solutions of Some Amino Acids (Glycine, Alanine, Valine and Leucine). <i>Advanced Science Letters</i> , 2012 , 7, 43-51	0.1	15
282	Antifouling of Titania Nanostructures in Real Maritime Conditions. <i>Science of Advanced Materials</i> , 2018 , 10, 1216-1223	2.3	15
281	Identification and characterization of cadmium resistant fungus isolated from contaminated site and its potential for bioremediation. <i>Environmental Technology and Innovation</i> , 2020 , 17, 100604	7	15

280	Bare and nonionic surfactant-functionalized praseodymium oxide nanoparticles: Toxicological studies. <i>Chemosphere</i> , 2018 , 209, 1007-1020	8.4	14
279	The effect of sodium dodecyl sulphate on Furosemide IA cardiovascular drug in waterThethanol at different temperature. <i>Journal of Molecular Liquids</i> , 2013 , 188, 237-244	6	14
278	Multi walled carbon nanotubes as sorbent for removal of crystal violet. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 7054-9	1.3	14
277	High-sensitive glutamate biosensor based on NADH at Lauth's violet/multiwalled carbon nanotubes composite film on gold substrates. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 1511-6	3.4	14
276	Evolution of ZnO nanostructures on silicon substrate by vapor-solid mechanism: Structural and optical properties. <i>Journal of Electronic Materials</i> , 2006 , 35, 758-765	1.9	14
275	Development of Self-Assembled Monolayers of Single-Walled Carbon Nanotubes Assisted Cysteamine on Gold Electrodes. <i>Advanced Science Letters</i> , 2009 , 2, 28-34	0.1	14
274	Novel Approaches for Enhancement of Drug Bioavailability. <i>Reviews in Advanced Sciences and Engineering</i> , 2013 , 2, 133-154		14
273	Fern shaped La2O3 nanostructures as potential scaffold for efficient hydroquinone chemical sensing application. <i>Ceramics International</i> , 2020 , 46, 5141-5148	5.1	14
272	Urchin like CuO hollow microspheres for selective high response ethanol sensor application: Experimental and theoretical studies. <i>Ceramics International</i> , 2021 , 47, 12084-12095	5.1	14
271	Highly sensitive and selective 2-nitroaniline chemical sensor based on Ce-doped SnO2 nanosheets/Nafion-modified glassy carbon electrode. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	14
270	Co3O4 nanoparticles/MWCNTs composites: a potential scaffold for hydrazine and glucose electrochemical detection. <i>RSC Advances</i> , 2017 , 7, 50087-50096	3.7	13
269	Hexagonal cadmium oxide nanodisks: Efficient scaffold for cyanide ion sensing and photo-catalytic applications. <i>Talanta</i> , 2016 , 153, 57-65	6.2	13
268	Intermolecular interactions of l-glutamine and l-histidine in aqueous solutions of metformin hydrochloride: Thermo-acoustic and optical properties. <i>Journal of Molecular Liquids</i> , 2016 , 214, 390-399	6	13
267	Preparation and Characterization of AgNPs In Situ Synthesis on Polyelectrolyte Membrane Coated Sericin/Agar Film for Antimicrobial Applications. <i>Materials</i> , 2018 , 11,	3.5	13
266	Electrical properties of solution processed p-SnS nanosheets/n-TiO2 heterojunction assembly. <i>Applied Physics Letters</i> , 2013 , 103, 101602	3.4	13
265	Density, Sound Velocity, Viscosity, Surface Tension and Spectroscopic Studies of Sodium Dodecylbenzenesulfonate (SDBS) in Aqueous Solution of Histidine. <i>Advanced Science, Engineering and Medicine</i> , 2013 , 5, 720-725	0.6	13
264	Growth, Properties and Dye-Sensitized Solar Cells (DSSCs) Applications of ZnO Nanocones and Small Nanorods. <i>Science of Advanced Materials</i> , 2011 , 3, 695-701	2.3	13
263	The Influence of Synthesis Method on the CO2 Adsorption Capacity of Mg3Alt1O3 Hydrotalcite-Derived Adsorbents. <i>Science of Advanced Materials</i> , 2014 , 6, 1154-1159	2.3	13

(2016-2014)

262	Iron-Doped ZnO Nanoparticles as Potential Scaffold for Hydrazine Chemical Sensor. <i>Sensor Letters</i> , 2014 , 12, 1273-1278	0.9	13	
261	Ultrasensitive and selective label-free aptasensor for the detection of penicillin based on nanoporous PtTi/graphene oxide-Fe3O4/ MWCNT-Fe3O4 nanocomposite. <i>Microchemical Journal</i> , 2020 , 158, 105270	4.8	13	
260	Functionalized nanomaterials: a new avenue for mitigating environmental problems. <i>International Journal of Environmental Science and Technology</i> , 2019 , 16, 5331-5358	3.3	13	
259	CdO-ZnO nanorices for enhanced and selective formaldehyde gas sensing applications. <i>Environmental Research</i> , 2021 , 200, 111377	7.9	13	
258	Synergy of CO Response and Aggregation-Induced Emission in a Block Copolymer: A Facile Way To "See" Cancer Cells. <i>ACS Applied Materials & Empty Interfaces</i> , 2019 , 11, 37077-37083	9.5	12	
257	Phase modulation in nanocrystalline vanadium di-oxide (VO2) nanostructures using citric acid via one pot hydrothermal method. <i>Ceramics International</i> , 2019 , 45, 18452-18461	5.1	12	
256	Synthesis and characterization of alkali metal molybdates with high catalytic activity for dye degradation. <i>RSC Advances</i> , 2016 , 6, 54553-54563	3.7	12	
255	Synthesis and Characterization of Mercaptoacetic Acid Capped Cadmium Sulphide Quantum Dots. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 9861-7	1.3	12	
254	Highly sensitive and selective cyanide ion sensor based on modified ZnS nanoparticles. <i>Electrochimica Acta</i> , 2012 , 81, 308-312	6.7	12	
253	Magnesium-zinc ferrite nanoparticles: effect of copper doping on the structural, electrical and magnetic properties. <i>Journal of Nanoscience and Nanotechnology</i> , 2013 , 13, 4056-65	1.3	12	
252	Structural and optical properties of single-crystalline ultraviolet-emitting needle-shaped ZnO nanowires. <i>Materials Letters</i> , 2007 , 61, 4954-4958	3.3	12	
251	Two-step growth of hexagonal-shaped ZnO nanowires and nanorods and their properties. <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 4522-8	1.3	12	
250	Dye Sensitized Solar Cells Fabricated Using Cu-Doped TiO2 Nanopowder with Anthocyanin as Sensitizer. <i>Journal of Nanoelectronics and Optoelectronics</i> , 2015 , 10, 290-294	1.3	12	
249	NOx Gas Sensing Properties of Fe-Doped ZnO Nanoparticles. <i>Science of Advanced Materials</i> , 2020 , 12, 908-914	2.3	12	
248	Urea Biosensor Based on Zinc Oxide/Multi-Walled Carbon Nanotubes/Chitosan Nanocomposite Thin Films. <i>Sensor Letters</i> , 2014 , 12, 50-55	0.9	12	
247	Immobilization interaction between xenobiotic and Bjerkandera adusta for the biodegradation of atrazine. <i>Chemosphere</i> , 2020 , 257, 127060	8.4	12	
246	Gas sensor device for high-performance ethanol sensing using ⊕MnO2 nanoparticles. <i>Materials Letters</i> , 2021 , 286, 129232	3.3	12	
245	Bare and cationic surfactants capped tungsten trioxide nanoparticles based hydrazine chemical sensors: A comparative study. <i>Sensors and Actuators B: Chemical</i> , 2016 , 230, 571-580	8.5	12	

244	Glycols functionalized fluorescent Eu2O3 nanoparticles: Functionalization effect on the structural and optical properties. <i>Journal of Alloys and Compounds</i> , 2016 , 682, 160-169	5.7	12
243	Investigation of glass forming ability, linear and non-linear optical properties of Ge-Se-Te-Sb thin films. <i>Chemical Physics</i> , 2021 , 541, 111021	2.3	12
242	Photocatalytic and fluorescent chemical sensing applications of La-doped ZnO nanoparticles. <i>Chemical Papers</i> , 2021 , 75, 1555-1566	1.9	12
241	Highly stable field emission properties from well-crystalline 6-Fold symmetrical hierarchical ZnO nanostructures. <i>Ceramics International</i> , 2017 , 43, 11753-11758	5.1	11
240	Large-scale synthesis of coiled-like shaped carbon nanotubes using bi-metal catalyst. <i>Applied Nanoscience (Switzerland)</i> , 2018 , 8, 105-113	3.3	11
239	Dipole-modified graphene with ultrahigh gas sensibility. <i>Applied Surface Science</i> , 2018 , 440, 409-414	6.7	11
238	Controlled growth of single-crystalline nanostructured dendrites of Fe2O3 blended with MWCNT: a systematic investigation of highly selective determination of L-dopa. <i>RSC Advances</i> , 2014 , 4, 23050	3.7	11
237	Highly sensitive luminescent sensor for cyanide ion detection in aqueous solution based on PEG-coated ZnS nanoparticles. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2013 , 105, 516-21	4.4	11
236	Formation of hierarchical ZnO nanostructures BanocombsDGrowth mechanism, structural and optical properties. <i>Current Applied Physics</i> , 2008 , 8, 793-797	2.6	11
235	ZnO Nanoparticles: Cytological Effect on Chick Fibroblast Cells and Antimicrobial Activities Towards Escherichia Coli and Bacillus Subtilis. <i>Science of Advanced Materials</i> , 2013 , 5, 1571-1580	2.3	11
234	Enhanced NO2 gas sensor device based on supramolecularly assembled polyaniline/silver oxide/graphene oxide composites. <i>Ceramics International</i> , 2021 , 47, 25696-25707	5.1	11
233	Polydopamine-Based Surface Modification of ZnO Nanoparticles on Sericin/Polyvinyl Alcohol Composite Film for Antibacterial Application. <i>Molecules</i> , 2019 , 24,	4.8	10
232	Influence of iso-perthiocyanic acid and temperature on the aggregation properties of sodium dodecylsulphate in dimethylsulphoxide. <i>Journal of Molecular Liquids</i> , 2015 , 211, 338-345	6	10
231	Enhanced solar light-mediated photocatalytic degradation of brilliant green dye in aqueous phase using BiPO4 nanospindles and MoS2/BiPO4 nanorods. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 20741-20750	2.1	10
230	Fabrication and Characterization of Highly Sensitive Acetone Chemical Sensor Based on ZnO Nanoballs. <i>Materials</i> , 2017 , 10,	3.5	10
229	Effect of hydrogen pretreatment combined with growth temperature on the morphologies of ZnO nanostructures: Structural and optical properties. <i>Journal of Crystal Growth</i> , 2007 , 306, 52-61	1.6	10
228	Evolution of ZnO nanostructures by non-catalytic growth process on steel alloy substrate: Structural and optical properties. <i>Current Applied Physics</i> , 2008 , 8, 798-802	2.6	10
227	Temperature-Dependant Volumetric and Compressibility Studies of Drug-Surfactant Interactions in Dimethylsulfoxide (DMSO) Solutions. <i>Advanced Science Letters</i> , 2012 , 5, 178-181	0.1	10

226	Typical Thin-Film Composite (TFC) Membranes Modified with Inorganic Nanomaterials for Forward Osmosis: A Review. <i>Nanoscience and Nanotechnology Letters</i> , 2016 , 8, 906-916	0.8	10
225	Well-Crystalline ⊞e2O3 Nanoparticles for Hydrazine Chemical Sensor Application. <i>Science of Advanced Materials</i> , 2011 , 3, 962-967	2.3	10
224	Preparation of Highly Ordered TiO2 Nanotube Array Photoelectrode for the Photoelectrocatalytic Degradation of Methyl Blue: Activity and Mechanism Study. <i>Science of Advanced Materials</i> , 2013 , 5, 156	53 ⁻² 1-570) ¹⁰
223	Removal of Cr (VI) from aqueous solution using VO2(B) nanoparticles. <i>Chemical Physics Letters</i> , 2020 , 739, 136934	2.5	10
222	Corrosion inhibition of carbon steel by three kinds of expired cephalosporins in 0.1[M H2SO4. <i>Journal of Molecular Liquids</i> , 2020 , 320, 114295	6	10
221	Ethylene-VInyl acetate/LDH nanocomposites with enhanced thermal stability, flame retardancy, and rheological property. <i>Polymer Composites</i> , 2016 , 37, 3449-3459	3	10
220	Ag-doped ZnO nanoellipsoids based highly sensitive gas sensor. <i>Materials Express</i> , 2017 , 7, 380-388	1.3	9
219	Novel multifunctional of magnesium ions (Mg++) incorporated calcium phosphate nanostructures. <i>Journal of Alloys and Compounds</i> , 2018 , 730, 31-35	5.7	9
218	Effect of Fluoride on the Morphology and Electrochemical Property of CoDINanostructures for Hydrazine Detection. <i>Materials</i> , 2018 , 11,	3.5	9
217	Relief of Oxidative Stress Using Curcumin and Glutathione Functionalized ZnO Nanoparticles in HEK-293 Cell Line. <i>Journal of Biomedical Nanotechnology</i> , 2015 , 11, 1913-26	4	9
216	Effect of post-annealing treatment on photocatalytic and photoelectrocatalytic performances of TiO2 nanotube arrays photoelectrode. <i>Journal of Nanoscience and Nanotechnology</i> , 2013 , 13, 5580-5	1.3	9
215	High aspect-ratio ZnO nanowires based nanoscale field effect transistors. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 2692-7	1.3	9
214	Low-temperature growth and properties of CuO structures prepared by aqueous solution process. Journal of Nanoscience and Nanotechnology, 2008, 8, 5511-5	1.3	9
213	Growth of ZnO nanoneedles on silicon substrate by cyclic feeding chemical vapor deposition: Structural and optical properties. <i>Korean Journal of Chemical Engineering</i> , 2007 , 24, 1084-1088	2.8	9
212	Highly Sensitive Ethanol Gas Sensors Based on Ag-Doped ZnO Nanocones. <i>Nanoscience and Nanotechnology Letters</i> , 2016 , 8, 241-246	0.8	9
211	Highly Sensitive Enzyme-Less Glucose Biosensor Based on Fe2O3 Nanoparticles. <i>Nanoscience and Nanotechnology Letters</i> , 2018 , 10, 429-434	0.8	9
210	Waterborne Polyurethane/Graphene Oxide Nanocomposites with Enhanced Properties. <i>Science of Advanced Materials</i> , 2017 , 9, 1895-1904	2.3	9
209	Cu-BTC metal organic framework (MOF) derived Cu-doped TiO2 nanoparticles and their use as visible light active photocatalyst for the decomposition of ofloxacin (OFX) antibiotic and antibacterial activity. <i>Advanced Powder Technology</i> , 2021 , 32, 1350-1361	4.6	9

208	ZnO Nanocrystal-Based Chloroform Detection: Density Functional Theory (DFT) Study. <i>Coatings</i> , 2019 , 9, 769	2.9	9
207	Hydroxyapatite (HA) Modified Nanocoating Enhancement on AZ31 Mg Alloy by Combined Surface Mechanical Attrition Treatment and Electrochemical Deposition Approach. <i>Journal of Nanoscience and Nanotechnology</i> , 2019 , 19, 810-818	1.3	9
206	An insight into improvement of room temperature formaldehyde sensitivity for graphene-based gas sensors. <i>Microchemical Journal</i> , 2021 , 160, 105607	4.8	9
205	Sustainable removal of Ni(II) from waste water by freshly isolated fungal strains. <i>Chemosphere</i> , 2021 , 282, 130871	8.4	9
204	EAgVO3 nanowires/TiO2 nanoparticles heterojunction assembly with improved visible light driven photocatalytic decomposition of hazardous pollutants and mechanism insight. <i>Separation and Purification Technology</i> , 2020 , 251, 117271	8.3	8
203	Iron-Doped Titanium Dioxide Nanoparticles As Potential Scaffold for Hydrazine Chemical Sensor Applications. <i>Coatings</i> , 2020 , 10, 182	2.9	8
202	Carbohydrate-surfactant interactions in aqueous and mixed organic solvents at various temperatures: Volumetric, compressibility and acoustical studies. <i>Journal of Molecular Liquids</i> , 2016 , 218, 637-648	6	8
201	Frictional Reduction with Partially Exfoliated Multi-Walled Carbon Nanotubes as Water-Based Lubricant Additives. <i>Journal of Nanoscience and Nanotechnology</i> , 2018 , 18, 3427-3432	1.3	8
200	Direct Growth of Flower-Shaped ZnO Nanostructures on FTO Substrate for Dye-Sensitized Solar Cells. <i>Crystals</i> , 2019 , 9, 405	2.3	8
199	Synthesis, Characterization, Photocatalytic and Sensing Properties of Mn-Doped ZnO Nanoparticles. <i>Journal of Nanoscience and Nanotechnology</i> , 2019 , 19, 8095-8103	1.3	8
198	UV- Vis- NIR and luminescent characterization of PZCdO:Tm laser oxide glasses. <i>Optical Materials</i> , 2017 , 73, 284-289	3.3	8
197	Rapidly synthesized polyethylene glycol coated cadmium sulphide (CdS) nanoparticles as potential scaffold for highly sensitive and selective lethal cyanide ion sensor. <i>Sensors and Actuators B:</i> Chemical, 2017, 241, 276-284	8.5	8
196	Ytterbium Doped Zinc Oxide Nanopencils for Chemical Sensor Application. <i>Journal of Nanoscience and Nanotechnology</i> , 2017 , 17, 9157-9162	1.3	8
195	Iron Oxide Nanocubes for Photocatalytic Degradation and Antimicrobial Applications. <i>Nanoscience and Nanotechnology Letters</i> , 2016 , 8, 1014-1019	0.8	8
194	Visible-Light Photocatalytic Degradation of Organic Pollutants Using Molybdenum Disulfide (MoS2) Microtubes. <i>Nanoscience and Nanotechnology Letters</i> , 2017 , 9, 1966-1974	0.8	8
193	CoMnAl Nonstoichiometric Spinel-Type Catalysts Derived from Hydrotalcites for the Simultaneous Removal of Soot and Nitrogen Oxides. <i>Science of Advanced Materials</i> , 2013 , 5, 1449-1457	2.3	8
192	Synthesis of ZnFe2O4/TiO2 Composite Nanofibers with Enhanced Photoelectrochemical Activity. <i>Science of Advanced Materials</i> , 2015 , 7, 295-300	2.3	8
191	Sunlight-Driven Photocatalytic Degradation of Methyl Orange Based on Bismuth Ferrite (BiFeO) Heterostructures Composed of Interconnected Nanosheets. <i>Journal of Nanoscience and Nanotechnology</i> , 2020 , 20, 1851-1858	1.3	8

190	Effect of Synthesis Temperature on the Morphologies, Optical and Electrical Properties of MgO Nanostructures. <i>Journal of Nanoscience and Nanotechnology</i> , 2020 , 20, 2488-2494	1.3	8	
189	Adsorptive removal of antibiotic ofloxacin in aqueous phase using rGO-MoS heterostructure. <i>Journal of Hazardous Materials</i> , 2021 , 417, 125982	12.8	8	
188	Ytterbium-Doped ZnO Flowers Based Phenyl Hydrazine Chemical Sensor. <i>Journal of Nanoscience and Nanotechnology</i> , 2019 , 19, 4199-4204	1.3	7	
187	Iron Oxide (宇e2O3) Nanoparticles as an Anode Material for Lithium Ion Battery. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 5129-34	1.3	7	
186	Growth of amorphous, anatase and rutile phase TiO2 thin films on Pt/TiO2/SiO2/Si (SSTOP) substrate for resistive random access memory (ReRAM) device application. <i>Ceramics International</i> , 2020 , 46, 16310-16320	5.1	7	
185	Synthesis and Characterization of Mimosa Pudica Leaves Shaped ∃ron Oxide Nanostructures for Ethanol Chemical Sensor Applications. <i>Journal of Nanoscience and Nanotechnology</i> , 2016 , 16, 2944-9	1.3	7	
184	Ultra-long germanium oxide nanowires: Structures and optical properties. <i>Journal of Alloys and Compounds</i> , 2014 , 606, 149-153	5.7	7	
183	Gamma-Fe2O3 nanospindles for environmental remediation: a study on the adsorption and desorption characteristics of acridine orange and direct red dyes. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 3545-51	1.3	7	
182	Synthesis and characterizations of ferrite nanomaterials for phenyl hydrazine chemical sensor applications. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 3765-70	1.3	7	
181	A novel synthesis and characterization of ordered meso/macroporous alumina with hierarchical and adjustable pore size. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 7340-4	1.3	7	
180	A nuclear tester for micro-hardness measurement. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2012 , 290, 39-42	1.2	7	
179	White Luminescence by Up-Conversion from Thin Film Made with Ln3+-Doped NaYF4 Nanoparticles. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 1254-1257	1.3	7	
178	Influence of Mn Doping on the Properties of Tin Oxide Nanoparticles Prepared by Co-Precipitation Method. <i>Journal of Nanoelectronics and Optoelectronics</i> , 2019 , 14, 583-592	1.3	7	
177	Synthesis of Sn-Doped ZnO Nanostructures for 4-Nitrophenol Chemical Sensor Application. <i>Nanoscience and Nanotechnology Letters</i> , 2016 , 8, 827-832	0.8	7	
176	ZnO Nanostructures and Their Sensing Applications: A Review. <i>Nanoscience and Nanotechnology Letters</i> , 2017 , 9, 1787-1826	0.8	7	
175	Adsorption and Diffusion of Benzene and Thiophene Over Y/MCM-41 Composite Zeolite. <i>Science of Advanced Materials</i> , 2013 , 5, 1132-1138	2.3	7	
174	Oxidative Stress Control in E. coli and S. aureus Cells Using Amines Adsorbed ZnO. <i>Science of Advanced Materials</i> , 2014 , 6, 1236-1243	2.3	7	
173	Growth and Properties of Sn-Doped ZnO Nanowires for Heterojunction Diode Application. <i>Science of Advanced Materials</i> , 2014 , 6, 1993-2000	2.3	7	

172	Preparation and Electrochemical Characterization of SnDoped TiO2(B) Nanotube as an Anode Material for Lithium-Ion Battery. <i>Science of Advanced Materials</i> , 2015 , 7, 821-826	2.3	7
171	Electrochemical Sensors Based on Semiconductor Nanostructures Modified Electrodes. <i>Science of Advanced Materials</i> , 2015 , 7, 2069-2083	2.3	7
170	Growth and Characterization of ⊞e2O3 Nanoparticles for Environmental Remediation and Chemical Sensor Applications. <i>Science of Advanced Materials</i> , 2015 , 7, 2747-2754	2.3	7
169	Toughening Poly(lactic acid) by Melt Blending with Poly(ether-block-amide) Copolymer. <i>Science of Advanced Materials</i> , 2017 , 9, 1683-1692	2.3	7
168	Polyaniline-Functionalized TiO2 Nanoparticles as a Suitable Matrix for Hydroquinone Sensor. <i>Science of Advanced Materials</i> , 2017 , 9, 2032-2038	2.3	7
167	Colloidal synthesis of NiMn2O4 nanodisks decorated reduced graphene oxide for electrochemical applications. <i>Microchemical Journal</i> , 2021 , 160, 105630	4.8	7
166	An insight into the mechanism of Symbiotic-bioremovallof heavy metal ions from synthetic and industrial samples using bacterial consortium. <i>Environmental Technology and Innovation</i> , 2021 , 21, 1013	072	7
165	In vitro microcosm of co-cultured bacteria for the removal of hexavalent Cr and tannic acid: A mechanistic approach to study the impact of operational parameters. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 208, 111484	7	7
164	Synthesis of porous 2D layered nickel oxide-reduced graphene oxide (NiO-rGO) hybrid composite for the efficient electrochemical detection of epinephrine in biological fluid. <i>Environmental Research</i> , 2021 , 200, 111366	7.9	7
163	Biosynthesis, Characterization and Biological Activities of Silver Nanoparticles from Benth. Methanolic Leaf Extract. <i>Journal of Nanoscience and Nanotechnology</i> , 2019 , 19, 4109-4115	1.3	6
162	Micellar solubilization of Furosemide Influence of cetyltrimethylammonium bromide in water the than ol mixture. <i>Journal of Molecular Liquids</i> , 2015 , 211, 761-766	6	6
161	Facile and Rapid Synthesis of ZnO Nanoparticles for Photovoltaic Device Application. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 6807-12	1.3	6
160	Binder-Free Electrode Based on ZnO Nanorods Directly Grown on Aluminum Substrate for High Performance Supercapacitors. <i>Nanomaterials</i> , 2020 , 10,	5.4	6
159	Electrical properties of Ga-doped ZnO nanowires/Si heterojunction diode. <i>Materials Express</i> , 2020 , 10, 794-801	1.3	6
158	Beckmann Rearrangement of Cyclohexanone Oxime Using Nanocrystalline Titanium Silicalite-1 (TS-1). <i>Journal of Nanoscience and Nanotechnology</i> , 2017 , 17, 2170-2176	1.3	6
157	Insight into calcification of Synechocystis sp. enhanced by extracellular carbonic anhydrase. <i>RSC Advances</i> , 2016 , 6, 29811-29817	3.7	6
156	Preparation and Characterization of Highly Efficient CuFe Mixed Oxides for Total Oxidation of Toluene. <i>Journal of Nanoscience and Nanotechnology</i> , 2018 , 18, 3381-3386	1.3	6
155	Photocatalytic oxidation of phenolic pollutants and hydrophobic organic compounds in industrial wastewater using modified nonosize titanium silicate-1 thin film technology. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 7345-50	1.3	6

154	Structural, optical and field emission properties of urchin-shaped ZnO nanostructures. <i>Journal of Nanoscience and Nanotechnology</i> , 2013 , 13, 86-90	1.3	6
153	Direct growth of ZnO nanosheets on FTO substrate for dye-sensitized solar cells applications. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 6666-71	1.3	6
152	Understanding the effect of flower extracts on the photoconducting properties of nanostructured TiO2. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 7860-8	1.3	6
151	Comparison between the electrical properties of ZnO nanowires based field effect transistors fabricated by back- and top-gate approaches. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 6010)- [63	6
150	Volumetric and Compressibility Studies of Salt Induced Hydrophobic Interactions in PreMicellar Region of Sodium Dodecyl Sulfate. <i>Advanced Science, Engineering and Medicine</i> , 2012 , 4, 81-84	0.6	6
149	Development of Ethanol Gas Sensor Using Fe2O3 Nanocubes Synthesized by Hydrothermal Process. <i>Journal of Nanoelectronics and Optoelectronics</i> , 2020 , 15, 59-64	1.3	6
148	Morphology Controlled Synthesis of Co3O4 Nanostructures for Hydrazine Chemical Sensor. <i>Nanoscience and Nanotechnology Letters</i> , 2016 , 8, 634-640	0.8	6
147	Efficient Photocatalytic Degradation of Victoria Blue R and Fast Green FCF Dyes Using Fe2O3 and Fe3O4 Nanoparticles. <i>Nanoscience and Nanotechnology Letters</i> , 2016 , 8, 965-971	0.8	6
146	Methanol Gas Sensor Based on ZnOBnO2 Hollow Urchins. <i>Nanoscience and Nanotechnology Letters</i> , 2018 , 10, 1405-1411	0.8	6
145	Amelioration of Iron Induced Clastogenicity and DNA Damage in Wistar Rats by Thymoquinone. <i>Science of Advanced Materials</i> , 2014 , 6, 933-945	2.3	6
144	Highly Sensitive Hydroquinone Chemical Sensor Based on Cd0.5Mg0.4Ca0.1Fe2O4 Nanoparticles. <i>Science of Advanced Materials</i> , 2017 , 9, 2196-2201	2.3	6
143	Fabrication and Characterization of Non-Enzymatic Glucose Sensor Based on Co3O4 Nanoparticles. <i>Sensor Letters</i> , 2014 , 12, 69-74	0.9	6
142	Label-Free Electrochemical Sensor Based on Manganese Doped Titanium Dioxide Nanoparticles for Myoglobin Detection: Biomarker for Acute Myocardial Infarction. <i>Molecules</i> , 2021 , 26,	4.8	6
141	Gamma-ray attenuation, fast neutron removal cross-section and build up factor of Cu2MnGe[S, Se, Te]4 semiconductor compounds: Novel approach. <i>Radiation Physics and Chemistry</i> , 2021 , 179, 109248	2.5	6
140	Multiscale Interface Effect on Homogeneous Dielectric Structure of ZrO©Teflon Nanocomposite for Electrowetting Application. <i>Polymers</i> , 2018 , 10,	4.5	6
139	Highly Sensitive Picric Acid Chemical Sensor Based on Samarium (Sm) Doped ZnO Nanorods. Journal of Nanoscience and Nanotechnology, 2019 , 19, 3637-3642	1.3	5
138	Exploration of fulvic acid as a functional excipient in line with the regulatory requirement. <i>Environmental Research</i> , 2020 , 187, 109642	7.9	5
137	Fabrication and Characterizations of Ethanol Sensor Based on CuO Nanoparticles. <i>Journal of Nanoscience and Nanotechnology</i> , 2018 , 18, 2892-2897	1.3	5

136	Ethylene Glycol Functionalized Gadolinium Oxide Nanoparticles as a Potential Electrochemical Sensing Platform for Hydrazine and p-Nitrophenol. <i>Coatings</i> , 2019 , 9, 633	2.9	5
135	Synthesis and Characterization of Zinc Oxide Nanosheets for Dye-Sensitized Solar Cells. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 9954-9	1.3	5
134	Low-temperature growth of aligned ZnO nanorods: effect of annealing gases on the structural and optical properties. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 4564-9	1.3	5
133	Facile growth and characterization of TiO2 nanoparticles for photocatalytic degradation of 2,3-dichlorophenol: experimental optimization and comparison with commercial TiO2. <i>Journal of Nanoscience and Nanotechnology</i> , 2013 , 13, 4172-7	1.3	5
132	Temperature dependant structural and electrical properties of ZnO nanowire networks. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 68-74	1.3	5
131	Synthesis of donut-like SnO2 structures composed of small nanocrystals on silicon substrate: Growth mechanism, structural and optical properties. <i>Journal of Alloys and Compounds</i> , 2009 , 485, 759-	7 ē 3	5
130	Heterobimetallic Complexes Containing Cu and Si. <i>Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry</i> , 2003 , 33, 1459-1468		5
129	Acoustical and Volumetric Studies of Proline in Ethanolic Solutions of Lecithin at Different Temperatures. <i>Advanced Science, Engineering and Medicine</i> , 2013 , 5, 991-997	0.6	5
128	Synthesis of Iron Oxide@Pt Core-Shell Nanoparticles for Reductive Conversion of Cr(VI) to Cr(III) and Antibacterial Studies. <i>Journal of Nanoscience and Nanotechnology</i> , 2020 , 20, 918-923	1.3	5
127	Poly(Acrylic Acid)/Multi-Walled Carbon Nanotube Composites: Efficient Scaffold for Highly Sensitive 2-Nitrophenol Chemical Sensor. <i>Nanoscience and Nanotechnology Letters</i> , 2016 , 8, 200-206	0.8	5
126	n-ZnO Based Nanostructure/p-Silicon Substrate Based Efficient pl Heterojunction Diode. <i>Science of Advanced Materials</i> , 2013 , 5, 301-307	2.3	5
125	ZnO Balls Made of Intermingled Nanocrystalline Nanosheets for Photovoltaic Device Application. <i>Science of Advanced Materials</i> , 2014 , 6, 562-568	2.3	5
124	Carbon Nanodots as a Potential Transport Layer for Boosting Performance of All-Inorganic Perovskite Nanocrystals-Based Photodetector. <i>Crystals</i> , 2021 , 11, 717	2.3	5
123	EMnO2 Nanowires as Potential Scaffolds for a High-Performance Formaldehyde Gas Sensor Device. <i>Coatings</i> , 2021 , 11, 860	2.9	5
122	Distinctive Solvatochromic Response of Fluorescent Carbon Dots Derived from Different Components of Aegle Marmelos Plant. <i>Engineered Science</i> , 2021 ,	3.8	5
121	Direct sunlight-driven enhanced photocatalytic performance of VO nanorods/ graphene oxide nanocomposites for the degradation of Victoria blue dye. <i>Environmental Research</i> , 2021 , 199, 111369	7.9	5
120	Growth of Multipod ZnO Architectures Made by Accumulation of Hexagonal Nanorods for Dye Sensitized Solar Cell (DSSC) Application. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 6801-6	1.3	4
119	Surface Modification of Bentonite with Polymer Brushes and Its Application as an Efficient Adsorbent for the Removal of Hazardous Dye Orange I. <i>Nanomaterials</i> , 2020 , 10,	5.4	4

118	Furosemidelletyltrimethylammonium Bromide Interactions in Aqueous Dimethylsulfoxide Solutions: Physicollhemical Studies. <i>Zeitschrift Fur Physikalische Chemie</i> , 2019 , 233, 413-430	3.1	4	
117	Fabrication and Characterization of n-ZnO Hexagonal Nanorods/p-Si Heterojunction Diodes: Temperature-Dependant Electrical Characteristics. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 4969-75	1.3	4	
116	Tailoring the Optoelectronic Properties of Nano-Metal Oxides Using Anthocyanins and Lanthanide. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 9548-53	1.3	4	
115	Single ZnO nanowire based high-performance field effect transistors (FETs). <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 5839-44	1.3	4	
114	Well-crystalline ZnO nanowire based field effect transistors (FETs). <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 5102-7	1.3	4	
113	La(0.7)Sr(0.3)MnO3 nanoparticles based ultra-high sensitive ammonia chemical sensor. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 6368-73	1.3	4	
112	Low-temperature growth of flower-shaped UV-emitting ZnO nanostructures on steel alloy by thermal evaporation. <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 4421-7	1.3	4	
111	Transformation of solid plastic waste to activated carbon fibres for wastewater treatment <i>Chemosphere</i> , 2022 , 133692	8.4	4	
110	Effect of Nickel Doping on the Properties of Hydroxyapatite Nanoparticles. <i>Journal of Nanoscience and Nanotechnology</i> , 2020 , 20, 2482-2487	1.3	4	
109	Fabrication of ZnO Nanorods Based pl Heterojunction Diodes and Their Electrical Behavior with Temperature. <i>Journal of Nanoelectronics and Optoelectronics</i> , 2017 , 12, 731-735	1.3	4	
108	Adsorption of CH4 Molecules on Pt-Doped ZnO(0 0 1) Surfaces: A Density Functional Theory Study. Journal of Nanoelectronics and Optoelectronics, 2019 , 14, 513-520	1.3	4	
107	Visible Light Driven Photo-Catalytic Degradation of Fluoroquinolone Antibiotic Drug Using Bi2WO6 Spheres Composed of Fluffy Nanosheets. <i>Nanoscience and Nanotechnology Letters</i> , 2016 , 8, 660-666	0.8	4	
106	Synergetic Effect of WC/Porous Graphite Carbon Supports on Electrocatalytic Reactivity of Pt for Methanol Electrooxidation. <i>Science of Advanced Materials</i> , 2013 , 5, 1709-1717	2.3	4	
105	Synthesis of ZnMoO4/Na2Mo4O13/EMoO3 Hybrid Catalyst for the Catalytic Wet Air Oxidation of Dye Under Room Condition. <i>Science of Advanced Materials</i> , 2014 , 6, 2159-2164	2.3	4	
104	ZnO Nanoparticles: Efficient Material for the Detection of Hazardous Chemical. <i>Sensor Letters</i> , 2014 , 12, 1393-1398	0.9	4	
103	Enhanced sunlight-driven photocatalytic activity of SnO2-Sb2O3 composite towards emerging contaminant degradation in water. <i>Journal of Alloys and Compounds</i> , 2021 , 162935	5.7	4	
102	Practical room temperature formaldehyde sensing based on a combination of visible-light activation and dipole modification. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 23955-23967	13	4	
101	Methylene blue intercalated layered MnO2 nanosheets for high-sensitive non-enzymatic ascorbic acid sensor. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 8317-8329	2.1	4	

100	Anodic stripping voltammetry analysis of gold nanoparticles functionalized one-dimensional single polypyrrole nanowire for arsenic sensing. <i>Surfaces and Interfaces</i> , 2021 , 23, 100895	4.1	4
99	Iron Oxide Nanoparticles as Potential Scaffold for Photocatalytic and Sensing Applications. <i>Journal of Nanoscience and Nanotechnology</i> , 2019 , 19, 2695-2701	1.3	4
98	Probe Into the Influence of Crosslinking on CO Permeation of Membranes. <i>Scientific Reports</i> , 2017 , 7, 40082	4.9	3
97	Smoke sensing applications of Brij 58 functionalized Praseodymium oxide (Pr6O11) nanostructures. <i>Sensors and Actuators B: Chemical</i> , 2019 , 297, 126628	8.5	3
96	An investigation on photoconductivity of non-stoichiometric CuZnSn(S, Se)4 thin films for photovoltaic applications. <i>Physica Scripta</i> , 2019 , 94, 085807	2.6	3
95	Electric-field induced layer-by-layer assembly technique with single component for construction of conjugated polymer films. <i>RSC Advances</i> , 2015 , 5, 58499-58503	3.7	3
94	Effectiveness of HIV/AIDS educational intervention in increasing knowledge, attitude and practices for primary school teachers in some part of Africa. <i>HIV and AIDS Review</i> , 2016 , 15, 17-25	0.3	3
93	The influence of Na species addition on the synthesis and catalytic activity of Na2Mo4O13/\(\frac{1}{2}\)MoO3 as CWAO catalyst. <i>Catalysis Today</i> , 2016 , 278, 192-202	5.3	3
92	Fabrication of water soluble and luminescent Eu2O3 nanoparticles for specific quantification of aromatic nitrophenols in aqueous media. <i>Chemical Physics Letters</i> , 2019 , 736, 136799	2.5	3
91	Functionalized vertical GaN micro pillar arrays with high signal-to-background ratio for detection and analysis of proteins secreted from breast tumor cells. <i>Scientific Reports</i> , 2017 , 7, 14917	4.9	3
90	Hierarchical zeolite beta: an efficient and eco-friendly nanocatalyst for the Friedel-Crafts acylation of toluene. <i>Journal of Nanoscience and Nanotechnology</i> , 2013 , 13, 4415-20	1.3	3
89	Growth of aligned hexagonal ZnO nanorods on FTO substrate for dye-sensitized solar cells (DSSCs) application. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 3560-4	1.3	3
88	Carbon?Iron Electron Transport Channels in Porphyrin-Graphene Complex for ppb-Level Room Temperature NO Gas Sensing <i>Small</i> , 2022 , 18, e2103259	11	3
87	Nanocrystalline ZnO Flakes for Photovoltaic Device Applications. <i>Advanced Science Letters</i> , 2010 , 3, 543	-547	3
86	Urea Sensing Properties of Cu-Doped Titanate Nanostructures. Advanced Science Letters, 2011, 4, 3451-	3457	3
85	Enhanced Field Emission Properties of Aligned ZnO Nanowires. <i>Nanoscience and Nanotechnology Letters</i> , 2016 , 8, 521-526	0.8	3
84	Fabrication and Characterization of Highly Sensitive and Selective Glucose Biosensor Based on ZnO Decorated Carbon Nanotubes. <i>Nanoscience and Nanotechnology Letters</i> , 2016 , 8, 853-858	0.8	3
83	Hydroquinone Sensor Based on Neodymium (Nd) Doped ZnO Hexagonal Nanorods. <i>Nanoscience and Nanotechnology Letters</i> , 2018 , 10, 351-357	0.8	3

82	Welcome to the Science of Advanced Materials. Science of Advanced Materials, 2009, 1, 1-3	2.3	3
81	Effect of Flower Extracts on the Optoelectronic Properties of Cd and Sn Doped TiO2 Nanopowder. <i>Science of Advanced Materials</i> , 2012 , 4, 763-770	2.3	3
80	Nanovesicular Delivery of Repaglinide Through Skin. Science of Advanced Materials, 2013, 5, 810-821	2.3	3
79	Preparation of Ni and Fe Doped Molybdate-Based Catalyst from NiHe Layered Double Hydroxide for the Catalytic Wet Air Oxidation of Dyes. <i>Science of Advanced Materials</i> , 2015 , 7, 1435-1442	2.3	3
78	Effect of Inoculum Size and Surface Charges on the Cytotoxicity of ZnO Nanoparticles for Bacterial Cells. <i>Science of Advanced Materials</i> , 2015 , 7, 2515-2522	2.3	3
77	All In-Plane Thermoelectric Properties of Atomic Layer Deposition-Grown Al2O3/ZnO Superlattice Film in the Temperature Range from 300 to 500 K. <i>Science of Advanced Materials</i> , 2017 , 9, 1296-1301	2.3	3
76	Electrical Properties of Exfoliated Multilayer Germanium Selenide (GeSe) Nanoflake Field-Effect Transistors. <i>Science of Advanced Materials</i> , 2018 , 10, 1596-1600	2.3	3
75	A Special Issue on Biosensors. <i>Sensor Letters</i> , 2016 , 14, 1-3	0.9	3
74	Synthesis, characterization and spectroscopic studies of the dihydrobis(1,2,3-benzotriazolyl)borate anion and its complexes with MCl2[by2. <i>Journal of the Serbian Chemical Society</i> , 2006 , 71, 1137-1145	0.9	3
73	Enhanced photoresponsivity of anatase titanium dioxide (TiO2)/nitrogen-doped graphene quantum dots (N-GQDs) heterojunction-based photodetector. <i>Advanced Composites and Hybrid Materials</i> , 2021 , 4, 1354	8.7	3
72	Enhanced Photocatalytic Performance of SnSiO Nanoparticles and Their Reduced Graphene Oxide (rGO) Nanocomposite. <i>Journal of Nanoscience and Nanotechnology</i> , 2020 , 20, 5426-5432	1.3	3
71	In Vitro Bioadsorption of Cd2+ Ions: Adsorption Isotherms, Mechanism, and an Insight to Mycoremediation. <i>Processes</i> , 2020 , 8, 1085	2.9	3
70	Selective ethanol gas sensing performance of flower-shaped CuO composed of thin nanoplates. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 18565-18579	2.1	3
69	Assembly with copper(ii) ions and D-EA molecules on a graphene surface for ultra-fast acetic acid sensing at room temperature <i>RSC Advances</i> , 2019 , 9, 30432-30438	3.7	3
68	Bifunction-Integrated Dielectric Nanolayers of Fluoropolymers with Electrowetting Effects. <i>Materials</i> , 2018 , 11,	3.5	3
67	p-CuO/n-ZnO Heterojunction Structure for the Selective Detection of Hydrogen Sulphide and Sulphur Dioxide Gases: A Theoretical Approach. <i>Coatings</i> , 2021 , 11, 1200	2.9	3
66	Assembling Hollow Cactus-Like ZnO Nanorods with Dipole-Modified Graphene Nanosheets for Practical Room-Temperature Formaldehyde Sensing ACS Applied Materials & amp; Interfaces, 2022,	9.5	3
65	In Situ Construction of the Coral-like Polyaniline on the Aligned Silicon Nanowire Arrays for Silicon Substrate On-chip Supercapacitors. <i>ACS Applied Energy Materials</i> , 2020 , 3, 11792-11802	6.1	2

64	Synergy of CO-response and aggregation induced emission in a small molecule: renewable liquid and solid CO chemosensors with high sensitivity and visibility. <i>Analyst, The</i> , 2020 , 145, 3528-3534	5	2
63	Synthesis and electrochemical properties of Ge4+ ions-modified VO2(paramontroseite). <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 3795-3802	2.1	2
62	Growth of n-Ga doped ZnO nanowires interconnected with disks over p-Si substrate and their heterojunction diode application. <i>Materials Express</i> , 2020 , 10, 21-28	1.3	2
61	Temperature-dependent heterojunction device characteristics of n-ZnO nanorods/p-Si assembly. <i>Materials Express</i> , 2020 , 10, 29-36	1.3	2
60	Fabrication of Heterojunction Diode Based on n-ZnO Nanowires/p-Si Substrate: Temperature Dependent Transport Characteristics. <i>Journal of Nanoscience and Nanotechnology</i> , 2017 , 17, 581-87	1.3	2
59	Fabrication and Characterization of Dye-Sensitized Solar Cells Based on Flower Shaped ZnO Nanostructures. <i>Journal of Nanoscience and Nanotechnology</i> , 2018 , 18, 3697-3701	1.3	2
58	Fast and Efficient Removal of Hazardous Congo Red from Its Aqueous Solution Using EFe2O3 Nanoparticles. <i>Journal of Nanoengineering and Nanomanufacturing</i> , 2013 , 3, 142-146		2
57	Growth and photocatalytic properties of Sb-doped ZnO nanoneedles by hydrothermal process 2011 ,		2
56	Complex nanostructures of ZnO: growth and properties. <i>International Journal of Nanomanufacturing</i> , 2009 , 4, 34	0.7	2
55	High-yield synthesis and properties of symmetrical comb-like ZnO nanostructures on aluminum foil substrate. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 2381-8	1.3	2
54	Effect of Nd-Doping on the Optical Properties of Yttrium Aluminum Garnet Nanopowders. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 1454-1457	1.3	2
53	Unloading of hazardous Cr and Tannic Acid from real and synthetic waste water by novel fungal consortia. <i>Environmental Technology and Innovation</i> , 2022 , 26, 102230	7	2
52	Coconut Carbon Dots: Progressive Large-Scale Synthesis, Detailed Biological Activities and Smart Sensing Aptitudes towards Tyrosine <i>Nanomaterials</i> , 2022 , 12,	5.4	2
51	Welcome to the Journal of Nanoengineering and Nanomanufacturing. <i>Journal of Nanoengineering and Nanomanufacturing</i> , 2011 , 1, 1-3		2
50	Synthesis and Properties of Aligned ZnO Nanorods on Si Substrate and Their Applications for p-Si/n-ZnO Heterojunction Diode. <i>Journal of Nanoelectronics and Optoelectronics</i> , 2015 , 10, 688-693	1.3	2
49	Nickel Doped Tin Oxide Nanoparticles: Magnetic, Dielectric and Electrical Properties. <i>Journal of Nanoelectronics and Optoelectronics</i> , 2019 , 14, 614-621	1.3	2
48	Low-Temperature Grown ZnO Nanoflakes for Dye Sensitized Solar Cell Application. <i>Nanoscience and Nanotechnology Letters</i> , 2016 , 8, 874-879	0.8	2
47	Fabrication and Characterization of ZnO Nanoneedles Based Field Emission Device. <i>Nanoscience and Nanotechnology Letters</i> , 2016 , 8, 885-889	0.8	2

All Cross-Plane Thermoelectric Properties of n-Type Bi2Te3 Thin Films in the Temperature Range from 77 to 500 K. <i>Nanoscience and Nanotechnology Letters</i> , 2018 , 10, 1586-1591	0.8	2	
A Special Issue on Biosynthesis of Nanomaterials and Their Applications. <i>Reviews in Advanced Sciences and Engineering</i> , 2014 , 3, 197-198		2	
Growth, Structural and Optical Properties of Well-Crystalline Al-Doped ZnO Nanowire and Their Based Field Effect Transistor (FET). <i>Science of Advanced Materials</i> , 2011 , 3, 719-724	2.3	2	•
Synthesis and Characterization of Co K /KxTi2O5 as Novel NOx Storage and Reduction (NSR) Catalyst. <i>Science of Advanced Materials</i> , 2013 , 5, 1743-1749	2.3	2	
Temperature-Dependent Electrical Properties of Sn-Doped ZnO Nanowires. <i>Science of Advanced Materials</i> , 2015 , 7, 2684-2691	2.3	2	
Anti-Oxidant Properties of Ficus religiosa L. Bark Extract on Human Keratinocytes. <i>Science of Advanced Materials</i> , 2016 , 8, 1221-1226	2.3	2	
Thermoelectric Properties of n-Type Bismuth Telluride (Bi2Te3) Thin Films Prepared by RF Sputtering. <i>Science of Advanced Materials</i> , 2016 , 8, 1172-1176	2.3	2	
Determining Interfacial Shear Bond Strength in Thin Laminated Metal Composites. <i>Science of Advanced Materials</i> , 2018 , 10, 1543-1551	2.3	2	
Fabrication and Characterization of Cholesterol Biosensor Based on Nanoscale Sn-TiO2 Thin Films. Sensor Letters, 2014 , 12, 44-49	0.9	2	
Supramolecularly assembled isonicotinamide/reduced graphene oxide nanocomposite for room-temperature NO2 gas sensor. <i>Environmental Technology and Innovation</i> , 2021 , 102066	7	2	
Realizing high performance flexible supercapacitors by electrode modification <i>RSC Advances</i> , 2021 , 11, 39045-39050	3.7	2	
Influence of Incorporated Barium Ion on the Physio-Chemical Properties of Zinc Oxide Nanodisks Synthesized via a Sonochemical Process. <i>Journal of Nanoscience and Nanotechnology</i> , 2020 , 20, 5452-545	5 7 3	2	
Low-temperature synthesis of cadmium-doped zinc oxide nanosheets for enhanced sensing and environmental remediation applications. <i>Journal of Alloys and Compounds</i> , 2021 , 863, 158649	5.7	2	
Synthesis, structural and pharmacological exploration of 2-(3, 5-dimethyl-1H-pyrazol-1-yl)-acetophenone oximes and their silver complexes. <i>Polyhedron</i> , 2021 , 195, 114972	2.7	2	
Multi-biological combined system: A mechanistic approach for removal of multiple heavy metals. <i>Chemosphere</i> , 2021 , 276, 130018	8.4	2	
Aluminum Doped ZnO Nanorods for Enhanced Phenylhydrazine Chemical Sensor Applications. <i>Science of Advanced Materials</i> , 2021 , 13, 2483-2488	2.3	2	
Cauliflower-Shaped ZnO Nanostructure for Enhanced NO2 Gas Sensor Application. <i>Science of Advanced Materials</i> , 2021 , 13, 2358-2363	2.3	2	
Three-Dimensional Graphene-Based Foams with G reater Electron Transferring AreasDeriving High Gas Sensitivity. <i>ACS Applied Nano Materials</i> , 2021 , 4, 13234-13245	5.6	2	
	A Special Issue on Biosynthesis of Nanomaterials and Their Applications. Reviews in Advanced Sciences and Engineering, 2014, 3, 197-198 Growth, Structural and Optical Properties of Well-Crystalline Al-Doped ZnO Nanowire and Their Based Field Effect Transistor (FET). Science of Advanced Materials, 2011, 3, 719-724 Synthesis and Characterization of CoB/KxTi2O5 as Novel NOx Storage and Reduction (NSR) Catalysts. Science of Advanced Materials, 2013, 5, 1743-1749 Temperature-Dependent Electrical Properties of Sn-Doped ZnO Nanowires. Science of Advanced Materials, 2015, 7, 2684-2691 Anti-Oxidant Properties of Ficus religiosa L. Bark Extract on Human Keratinocytes. Science of Advanced Materials, 2016, 8, 1221-1226 Thermoelectric Properties of n-Type Bismuth Telluride (Bi2Te3) Thin Films Prepared by RF Sputtering. Science of Advanced Materials, 2016, 8, 1217-1776 Determining Interfacial Shear Bond Strength in Thin Laminated Metal Composites. Science of Advanced Materials, 2018, 10, 1543-1551 Fabrication and Characterization of Cholesterol Biosensor Based on Nanoscale Sn-TiO2 Thin Films. Sensor Letters, 2014, 12, 44-49 Supramolecularly assembled isonicotinamide/reduced graphene oxide nanocomposite for room-temperature NO2 gas sensor. Environmental Technology and Innovation, 2021, 102066 Realizing high performance flexible supercapacitors by electrode modification RSC Advances, 2021, 11, 39045-39050 Influence of Incorporated Barium Ion on the Physio-Chemical Properties of Zinc Oxide Nanodisks Synthesized via a Sonochemical Process. Journal of Nanoscience and Nanotechnology, 2020, 20, 5452-54. Low-temperature synthesis of cadmium-doped zinc oxide nanosheets for enhanced sensing and environmental remediation applications. Journal of Alloys and Compounds, 2021, 863, 158649 Synthesized via a Sonochemical Process. Journal of Policy and Compounds, 2021, 863, 158649 Synthesized via a Sonochemical Process. Journal of Policy and Compounds, 2021, 863, 158649 Synthesized Combined System: A mechanistic approach for r	A Special Issue on Biosynthesis of Nanomaterials and Their Applications. Reviews in Advanced Sciences and Engineering, 2014, 3, 197-198 Growth, Structural and Optical Properties of Well-Crystalline Al-Doped ZnO Nanowire and Their Based Field Effect Transistor (FET). Science of Advanced Materials, 2011, 3, 719-724 23 Synthesis and Characterization of Cotk/kxTi2O5 as Novel NOx Storage and Reduction (NSR) 23 Temperature-Dependent Electrical Properties of Sn-Doped ZnO Nanowires. Science of Advanced Materials, 2013, 5, 1743-1749 Temperature-Dependent Electrical Properties of Sn-Doped ZnO Nanowires. Science of Advanced Materials, 2015, 7, 2684-2691 Anti-Oxidant Properties of Ficus religiosa L. Bark Extract on Human Keratinocytes. Science of Advanced Materials, 2016, 8, 1221-1226 Thermoelectric Properties of n-Type Bismuth Telluride (Bi2Te3) Thin Films Prepared by RF Sputtering. Science of Advanced Materials, 2016, 8, 1172-1176 Determining Interfacial Shear Bond Strength in Thin Laminated Metal Composites. Science of Advanced Materials, 2013, 10, 1543-1551 Eabrication and Characterization of Cholesterol Biosensor Based on Nanoscale Sn-TiO2 Thin Films. Supramolecularly assembled isonicotinamide/reduced graphene oxide nanocomposite for room-temperature NO2 gas sensor. Environmental Technology and Innovation, 2021, 102066 Realizing high performance flexible supercapacitors by electrode modification. RSC Advances, 2021, 11, 39045-39050 Influence of Incorporated Barium Ion on the Physio-Chemical Properties of Zinc Oxide Nanodisks Synthesized via a Sonochemical Process. Journal of Nanoscience and Nanotechnology, 2020, 20, 5452-54573 Low-temperature synthesis of cadmium-doped zinc oxide nanosheets for enhanced sensing and environmental remediation applications. Journal of Alloys and Compounds, 2021, 863, 158649 Synthesis, structural and pharmacological exploration of 2-(3, 5-6) dimethyl-H-pyrazol-1-yl)-acetophenone oximes and their silver complexes. Polyhedron, 2021, 175, 130018 Aluminum Doped ZnO Nanostructur	from 77 to 500 K. Nanoscience and Nanotechnology Letters, 2018, 10, 1586-1591 A Special Issue on Biosynthesis of Nanomaterials and Their Applications. Reviews in Advanced Sciences and Engineering, 2014, 3, 197-198 Growth, Structural and Optical Properties of Well-Crystalline Al-Doped ZnO Nanowire and Their Based Field Effect Transistor (FET). Science of Advanced Materials, 2011, 3, 719-724 2-3 2 Synthesis and Characterization of CoB/KxT12O5 as Novel Nox Storage and Reduction (NSR) 2-3 2 Synthesis and Characterization of CoB/KxT12O5 as Novel Nox Storage and Reduction (NSR) 2-3 2 Temperature-Dependent Electrical Properties of Sn-Doped ZnO Nanowires. Science of Advanced Materials, 2015, 7, 2684-2691 Anti-Oxidant Properties of Ficus religiosa L. Bark Extract on Human Keratinocytes. Science of Advanced Materials, 2016, 8, 1221-1226 Thermoelectric Properties of n-Type Bismuth Telluride (Bi2Te3) Thin Films Prepared by RF Sputtering. Science of Advanced Materials, 2016, 8, 1172-1176 Determining Interfacial Shear Bond Strength in Thin Laminated Metal Composites. Science of Advanced Materials, 2018, 10, 1543-1551 Fabrication and Characterization of Cholesterol Biosensor Based on Nanoscale Sn-TiO2 Thin Films. 0.9 2 Supramolecularly assembled isonicotinamide/reduced graphene oxide nanocomposite for room-temperature NO2 gas sensor. Environmental Technology and Innovation, 2021, 102066 7 2 Realizing high performance flexible supercapacitors by electrode modification RSC Advances, 2021 3, 7 2 2 Low-temperature synthesis of cadmium-doped zinc oxide nanosheets for enhanced sensing and environmental remediation applications. Journal of Nanoscience and Nanotechnology, 2020, 20, 5452-54575 2 Synthesized via a Sonochemical Process. Journal of Nanoscience and Nanotechnology, 2020, 20, 5452-54575 2 Synthesis, structural and pharmacological exploration of 2-(3, 54m) 11, 11, 11, 11, 11, 11, 11, 11, 11, 11

28	Protein (bovine serum albumin) driven copper selenide and copper telluride nanostructures: structural, optical and electrical properties. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 11317-11326	2.1	1
27	Flower-Shaped MgAlFe-COILayered Double Hydroxides Derived Adsorbents with Tunable Memory Effect for Environmental Remediation. <i>Journal of Nanoscience and Nanotechnology</i> , 2018 , 18, 2609-2615	1.3	1
26	A thermodynamic study of 1,4-dioxane across cellulose acetate membrane under different conditions. <i>Fluid Phase Equilibria</i> , 2012 , 322-323, 148-158	2.5	1
25	Growth of in-doped ZnO hollow spheres composed of nanosheets networks and nanocones: structural and optical properties. <i>Journal of Nanoscience and Nanotechnology</i> , 2013 , 13, 4639-44	1.3	1
24	A mechanistic study of photoluminescence quenching of cetyl trimethyl ammonium bromide stabilized ZnS nanoparticles with beta-cyclodextrin. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 1760-4	1.3	1
23	Structural, optical and field emission properties of ZnO nanowires grown by non-catalytic thermal evaporation process. <i>International Journal of Nanomanufacturing</i> , 2009 , 4, 77	0.7	1
22	Gamma-ray attenuation properties and fast neutron removal cross-section of Cu2CdSn3S8 and binary sulfide compounds (Cu/Cd/Sn S) using phy-X/PSD software. <i>Radiation Physics and Chemistry</i> , 2022 , 193, 109989	2.5	1
21	Growth of Quasi-Aligned ZnO Nanoneedles: Structural, Optical and Field Emission Properties. Journal of Nanoscience and Nanotechnology, 2017 , 17, 2134-2139	1.3	1
20	Structural, Optical and Magnetic Properties of ZnCoO Nanoparticles. <i>Journal of Nanoscience and Nanotechnology</i> , 2020 , 20, 5525-5532	1.3	1
19	Highly Sensitive and Selective Eco-Toxic 4-Nitrophenol Chemical Sensor Based on Ag-Doped ZnO Nanoflowers Decorated with Nanosheets. <i>Molecules</i> , 2021 , 26,	4.8	1
18	Charge transfer driven by redox dye molecules on graphene nanosheets for room-temperature gas sensing. <i>Nanoscale</i> , 2021 , 13, 18596-18607	7.7	1
17	Ultrathin Leaf-Shaped CuO Nanosheets Based Sensor Device for Enhanced Hydrogen Sulfide Gas Sensing Application. <i>Chemosensors</i> , 2021 , 9, 221	4	1
16	MnOINanoparticles Anchored Multi Walled Carbon Nanotubes as Potential Anode Materials for Lithium Ion Batteries. <i>Journal of Nanoscience and Nanotechnology</i> , 2021 , 21, 5296-5301	1.3	1
15	Indandione oligomer@graphene oxide functionalized nanocomposites for enhanced and selective detection of trace Cr2+ and Cu2+ ions. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	1
14	Effective removal of Pb(II) and Ni(II) ions by Bacillus cereus and Bacillus pumilus: An experimental and mechanistic approach <i>Environmental Research</i> , 2022 , 113337	7.9	1
13	Seed germination studies on Chickpeas, Barley, Mung beans and Wheat with natural biomass and plastic waste derived C-dots <i>Science of the Total Environment</i> , 2022 , 837, 155593	10.2	1
12	Hetero-aggregation behaviour of green copper nanoparticles: Course interactions with environmental components. <i>Separation and Purification Technology</i> , 2021 , 284, 120177	8.3	0
11	Trapping of oil molecules in clathrates: Oil trapping mechanism, soil composition and thermal studies. <i>Journal of Molecular Liquids</i> , 2020 , 319, 114169	6	O

LIST OF PUBLICATIONS

10	The co-modification of MoS2 and CdS on TiO2 nanotube array for improved photoelectrochemical properties. <i>Ionics</i> , 2021 , 27, 4371-4381	2.7	О
9	Analysis of the Radiation Attenuation Parameters of Cu2HgI4, Ag2HgI4, and (Cu/Ag/Hg I) Semiconductor Compounds. <i>Crystals</i> , 2022 , 12, 276	2.3	O
8	Mechanistic and analytical understanding of biological immobilization of chromium metal ions from waste-sites. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 10, 107498	6.8	O
7	Sustainable agronomic response of carbon quantum dots on Allium sativum: Translocation, physiological responses and alternations in chromosomal aberrations. <i>Environmental Research</i> , 2022 , 113559	7.9	O
6	Visible-Light Driven Effective Photocatalytic Degradation of Methylene Blue Dye Using Perforated Curly ZnNiO Nanosheets. <i>Journal of Nanoscience and Nanotechnology</i> , 2020 , 20, 5759-5764	1.3	
5	High Aspect Ratio Perforated Co D [Nanowires Derived from Cobalt-Carbonate-Hydroxide Nanowires with Enhanced Sensing Performance. <i>Journal of Nanoscience and Nanotechnology</i> , 2018 , 18, 3499-3504	1.3	
4	Growth and properties of ultra-violet emitting aligned zinc oxide nanocones with hexagonal caps. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 6659-65	1.3	
3	Controllable Synthesis of ZnO Nanonails by Vapor-Solid Process: Growth Mechanism and Structural and Optical Properties. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 957, 1		
2	A Solution Method for Large-scale Selective Growth of Aligned ZnO Nanorods. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 957, 1		
1	Reaction of Sn(II) Adduct with MCl2 [M = Mn(II), Fe(II), Co(II), Ni(II), and Cu(II)]. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry 2004, 34, 775-784		