
## Liang Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6522819/publications.pdf Version: 2024-02-01



| #  |                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Flexible FIO <mmi:math xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math&lt;/td"><td>3.0</td><td>4</td></mmi:math>                                                                              | 3.0 | 4         |
| 2  | Understanding the role of potassium incorporation in realizing transparent p-type ZnO thin films.<br>Journal of Alloys and Compounds, 2022, 904, 164070.                                                                | 2.8 | 3         |
| 3  | Flexible TiO2 nanograss array film decorated with BiOI nanoflakes and its greatly boosted photocatalytic activity. Ceramics International, 2021, 47, 7845-7852.                                                         | 2.3 | 12        |
| 4  | Preparation and thermoelectric properties of CuAlO2 compacts by tape casting followed by SPS.<br>Journal of Alloys and Compounds, 2021, 853, 157086.                                                                    | 2.8 | 13        |
| 5  | Significantly enhanced photocatalytic activity of TiO2/TiC coatings under visible light. Journal of Solid State Electrochemistry, 2021, 25, 603-609.                                                                    | 1.2 | 1         |
| 6  | Enhanced photocatalytic activity and stability of TiO2/graphene oxide composites coatings by electrophoresis deposition. Materials Letters, 2021, 286, 129258.                                                          | 1.3 | 14        |
| 7  | Facile preparation of anodized MoO3â^'x films and their boosted photocatalytic activity. Journal of<br>Environmental Chemical Engineering, 2021, 9, 105565.                                                             | 3.3 | 9         |
| 8  | Comparative study of MoS2/MoO3, g-C3N4/MoO3 heterojunction films and their improved photocatalytic activity. Applied Physics A: Materials Science and Processing, 2021, 127, 1.                                         | 1.1 | 5         |
| 9  | Enhancement of the photocatalytic activity of N-doped TiO2 nanograss array films by low-temperature sulfur doping. Materials Science in Semiconductor Processing, 2020, 108, 104872.                                    | 1.9 | 7         |
| 10 | A simple and effective approach to fabricate transparent p-n homojunction KZO/ZnO thin films.<br>Materials Letters, 2020, 276, 128163.                                                                                  | 1.3 | 5         |
| 11 | Influence of sulfuric-acid-bath pretreatment and soaked in sulfuric acid on surface morphology and photocatalytic activity of titania coatings. Science China Technological Sciences, 2020, 63, 2657-2663.              | 2.0 | 0         |
| 12 | Effect of minor graphene doping on the microstructure and superconductivity of FeSe. Journal of Materials Science: Materials in Electronics, 2020, 31, 15336-15344.                                                     | 1.1 | 5         |
| 13 | Enhanced photocatalytic activity of titania coatings fabricated at relatively low oxidation<br>temperature with sulfate-acid-bath pretreatment. Applied Physics A: Materials Science and Processing,<br>2020, 126, 1.   | 1.1 | 1         |
| 14 | Effect of Ni doping on microstructure and superconductivity of MgB2 prepared by C - coated B powder. Physica C: Superconductivity and Its Applications, 2019, 566, 1353540.                                             | 0.6 | 7         |
| 15 | Low-temperature S-doping on N-doped TiO2 films and remarkable enhancement on visible-light performance. Materials Research Bulletin, 2019, 120, 110594.                                                                 | 2.7 | 17        |
| 16 | Enhanced photocatalytic activity of potassium-doped titania photocatalyst films with nanosheet structure. Materials Letters, 2019, 242, 174-178.                                                                        | 1.3 | 11        |
| 17 | Fabrication and characterization of environmental purification unit using photo-catalytic balls with heterojunction. Journal of Water Process Engineering, 2019, 31, 100858.                                            | 2.6 | 5         |
| 18 | Analysis of the co-doping effect of graphene and nano-Ni on grain connectivity and critical current<br>density in MgB2 superconductors. Journal of Materials Science: Materials in Electronics, 2019, 30,<br>9888-9896. | 1.1 | 2         |

Liang Hao

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Synergetic improvement strategy on thermoelectric performance of CuAlO2 compacts. Ceramics<br>International, 2019, 45, 5486-5490.                                                                 | 2.3 | 5         |
| 20 | Multiple charge carrier transfer pathways in BiOBr/Bi2O3/BiO0.67F1.66 ternary composite with high adsorption and photocatalytic performance. Journal of Alloys and Compounds, 2019, 778, 924-932. | 2.8 | 12        |
| 21 | Oxygen vacancies in TiO2/SnO coatings prepared by ball milling followed by calcination and their influence on the photocatalytic activity. Applied Surface Science, 2019, 466, 490-497.           | 3.1 | 24        |
| 22 | Solar-responsive photocatalytic activity of amorphous TiO2 nanotube-array films. Materials Science in<br>Semiconductor Processing, 2019, 89, 161-169.                                             | 1.9 | 17        |
| 23 | Ultrasonic-assisted in-situ fabrication of BiOBr modified Bi2O2CO3 microstructure with enhanced photocatalytic performance. Ultrasonics Sonochemistry, 2018, 44, 137-145.                         | 3.8 | 32        |
| 24 | Constructing novel Bi2SiO5–Bi2O3 hybrid loaded sepiolite with enhanced visible light photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2018, 29, 6316-6322.        | 1.1 | 7         |
| 25 | Visible-light-driven oxygen vacancies and Ti 3+ co-doped TiO 2 coatings prepared by mechanical coating and carbon reduction. Materials Research Bulletin, 2018, 97, 13-18.                        | 2.7 | 47        |
| 26 | Composition and Structure Evolution of Bi2O3 Coatings as Efficient Photocatalysts. Coatings, 2018, 8, 14.                                                                                         | 1.2 | 4         |
| 27 | C, N co-doped TiO 2 /TiC 0.7 N 0.3 composite coatings prepared from TiC 0.7 N 0.3 powder using ball milling followed by oxidation. Applied Surface Science, 2017, 391, 275-281.                   | 3.1 | 4         |
| 28 | Preparation of visible-light-responsive TiO 2 coatings using molten KNO 3 treatment and their photocatalytic activity. Applied Surface Science, 2017, 407, 276-281.                               | 3.1 | 12        |
| 29 | Black composites photocatalyst coatings of K 2 Ti 6 O 13 -TiO 2 /TiC with nano-sheet flower-like structure by heat treatment in molten salt. Materials Letters, 2017, 188, 55-58.                 | 1.3 | 8         |
| 30 | CuAlO2 thermoelectric compacts by SPS and thermoelectric performance improvement by orientation control. Ceramics International, 2017, 43, 12154-12161.                                           | 2.3 | 11        |
| 31 | Magnèli phase Ti O2-1 bulks prepared by SPS followed by carbon reduction and their thermoelectric performance. Journal of Alloys and Compounds, 2017, 722, 846-851.                               | 2.8 | 16        |
| 32 | Easily recycled Bi2O3 photocatalyst coatings prepared via ball milling followed by calcination. Applied Physics A: Materials Science and Processing, 2017, 123, 1.                                | 1,1 | 7         |
| 33 | Fabrication and Characterization of Photocatalyst Coatings by Heat Treatment in Carbon Powder for<br>TiC Coatings. Solid State Phenomena, 2017, 263, 137-141.                                     | 0.3 | 0         |
| 34 | Preparation of Metal Coatings on Steel Balls Using Mechanical Coating Technique and Its Process<br>Analysis. Coatings, 2017, 7, 53.                                                               | 1.2 | 2         |
| 35 | A safe and efficient approach to fabricate black carbon-doped rutile titania by substitution of oxygen<br>at carbon sites in titanium carbide film. Materials Express, 2017, 7, 509-515.          | 0.2 | 3         |
| 36 | Surface topography evolution of TiO2/SnO2 coatings during thermal oxidation of Ti/Sn composite coatings. Surface and Coatings Technology, 2016, 291, 325-333.                                     | 2.2 | 3         |

Liang Hao

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Fabrication and characterization of photocatalyst composite coatings of TiO2/TiC-Ti using Ti and TiC powders. Surface and Coatings Technology, 2016, 307, 627-632.                                                                | 2.2 | 6         |
| 38 | Influence of carbon atmosphere on surface morphology and photocatalytic activity of TiO2 coatings<br>by multi-heat treatment. Journal of Materials Science: Materials in Electronics, 2016, 27, 3873-3879.                        | 1.1 | 3         |
| 39 | Influence of heat treatment process on photocatalytic activity of photocatalyst TiO2/TiCxOy coatings<br>during heat treatment in carbon powder. Journal of Materials Science: Materials in Electronics, 2016,<br>27, 10399-10404. | 1.1 | 5         |
| 40 | Enhanced photocatalytic activity of photocatalyst coatings by heat treatment in carbon atmosphere.<br>Materials Letters, 2016, 167, 43-46.                                                                                        | 1.3 | 17        |
| 41 | Fabrication of oxygen-deficient TiO 2 coatings with nano-fiber morphology for visible-light photocatalysis. Materials Science in Semiconductor Processing, 2016, 41, 358-363.                                                     | 1.9 | 33        |
| 42 | Review on the Photocatalyst Coatings of TiO2: Fabrication by Mechanical Coating Technique and Its Application. Coatings, 2015, 5, 425-464.                                                                                        | 1.2 | 22        |
| 43 | Fabrication of Photocatalyst Composite Coatings of Cr-TiO2 by Mechanical Coating Technique and Oxidation Process. Coatings, 2015, 5, 545-556.                                                                                     | 1.2 | 1         |
| 44 | Influence of oxidation process on photocatalytic activity of photocatalyst coatings by mechanical coating technique. Materials Science in Semiconductor Processing, 2015, 30, 128-134.                                            | 1.9 | 17        |
| 45 | Titanium dioxide–nickel oxide composite coatings: Preparation by mechanical coating/thermal<br>oxidation and photocatalytic activity. Materials Science in Semiconductor Processing, 2014, 24,<br>138-145.                        | 1.9 | 9         |
| 46 | Influence of Metal Properties on the Formation and Evolution of Metal Coatings During Mechanical<br>Coating. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013,<br>44, 2717-2724.       | 1.1 | 10        |
| 47 | Photocatalytic activity of TiO2/Ti composite coatings fabricated by mechanical coating technique and subsequent heat oxidation. Materials Science in Semiconductor Processing, 2013, 16, 1949-1956.                               | 1.9 | 14        |
| 48 | Analysis on energy transfer during mechanical coating and ball milling—Supported by electric power<br>measurement in planetary ball mill. International Journal of Mineral Processing, 2013, 121, 51-58.                          | 2.6 | 22        |
| 49 | Fabrication and Evaluation of Visible Light Active TiO2 Photocatalyst by Molten Salt Method. Nippon<br>Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2013, 77, 287-293.                                             | 0.2 | 5         |
| 50 | Fabrication of zinc coatings on alumina balls from zinc powder by mechanical coating technique and the process analysis. Powder Technology, 2012, 228, 377-384.                                                                   | 2.1 | 24        |
| 51 | The influence of the processing parameters on the formation of iron thin films on alumina balls by mechanical coating technique. Journal of Materials Processing Technology, 2012, 212, 1169-1176.                                | 3.1 | 27        |
| 52 | Formation of TiO <sub>2</sub> /Ti Composite Photocatalyst Film by 2-Step Mechanical Coating<br>Technique. Materials Science Forum, 2011, 675-677, 1229-1232.                                                                      | 0.3 | 12        |
| 53 | Evaluation and Suppression of <i>Microcystis aeruginosa</i> by Photocatalyst Coatings<br>with Visible Light Photocatalytic Activity. Solid State Phenomena, 0, 263, 148-151.                                                      | 0.3 | 0         |