Josef Settele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6522696/publications.pdf Version: 2024-02-01

LOSEE SETTELE

#	Article	IF	CITATIONS
1	Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. Science, 2006, 313, 351-354.	6.0	2,359
2	Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 2009, 68, 810-821.	2.9	1,940
3	Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environmental Science and Pollution Research, 2015, 22, 5-34.	2.7	1,215
4	Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 2019, 366, .	6.0	1,213
5	Safeguarding pollinators and their values to human well-being. Nature, 2016, 540, 220-229.	13.7	1,204
6	Alien species in a warmer world: risks and opportunities. Trends in Ecology and Evolution, 2009, 24, 686-693.	4.2	1,031
7	Predictors of Species Sensitivity to Fragmentation. Biodiversity and Conservation, 2004, 13, 207-251.	1.2	786
8	Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research, 2015, 22, 68-102.	2.7	639
9	Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change, 2012, 2, 121-124.	8.1	594
10	Ecological effects of invasive alien insects. Biological Invasions, 2009, 11, 21-45.	1.2	564
11	MEASURING BEE DIVERSITY IN DIFFERENT EUROPEAN HABITATS AND BIOGEOGRAPHICAL REGIONS. Ecological Monographs, 2008, 78, 653-671.	2.4	562
12	Declines of managed honey bees and beekeepers in Europe. Journal of Apicultural Research, 2010, 49, 15-22.	0.7	469
13	Scientists' warning to humanity on insect extinctions. Biological Conservation, 2020, 242, 108426.	1.9	458
14	CLIMATE CHANGE CAN CAUSE SPATIAL MISMATCH OF TROPHICALLY INTERACTING SPECIES. Ecology, 2008, 89, 3472-3479.	1.5	356
15	Lifeâ€history traits predict species responses to habitat area and isolation: a crossâ€continental synthesis. Ecology Letters, 2010, 13, 969-979.	3.0	336
16	Quantifying the Contribution of Organisms to the Provision of Ecosystem Services. BioScience, 2009, 59, 223-235.	2.2	312
17	Precisely incorrect? Monetising the value of ecosystem services. Ecological Complexity, 2010, 7, 327-337.	1.4	293
18	Advantages of Volunteerâ€Based Biodiversity Monitoring in Europe. Conservation Biology, 2009, 23, 307-316	2.4	276

#	Article	IF	CITATIONS
19	Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biological Reviews, 2010, 85, 777-795.	4.7	259
20	Impacts of a pesticide on pollinator species richness at different spatial scales. Basic and Applied Ecology, 2010, 11, 106-115.	1.2	237
21	Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecology Letters, 2017, 20, 673-689.	3.0	237
22	The influences of landscape structure on butterfly distribution and movement: a review. Journal of Insect Conservation, 2009, 13, 3-27.	0.8	214
23	Conclusions of the Worldwide Integrated Assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning. Environmental Science and Pollution Research, 2015, 22, 148-154.	2.7	206
24	Solutions for humanity on how to conserve insects. Biological Conservation, 2020, 242, 108427.	1.9	203
25	Butterfly monitoring in Europe: methods, applications and perspectives. Biodiversity and Conservation, 2008, 17, 3455-3469.	1.2	202
26	Effects of patch size and density on flower visitation and seed set of wild plants: a panâ€European approach. Journal of Ecology, 2010, 98, 188-196.	1.9	199
27	Climatic Risk Atlas of European Butterflies. BioRisk, 0, 1, 1-712.	0.2	196
28	Ecological networks are more sensitive to plant than to animal extinction under climate change. Nature Communications, 2016, 7, 13965.	5.8	180
29	Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nature Communications, 2020, 11, 576.	5.8	177
30	The ecosystem service cascade: Further developing the metaphor. Integrating societal processes to accommodate social processes and planning, and the case of bioenergy. Ecological Economics, 2014, 104, 22-32.	2.9	175
31	Climatic Risk and Distribution Atlas of European Bumblebees. BioRisk, 0, 10, 1-236.	0.2	171
32	Wild pollinator communities are negatively affected by invasion of alien goldenrods in grassland landscapes. Biological Conservation, 2009, 142, 1322-1332.	1.9	170
33	Alarm: Assessing Large-scale environmental Risks for biodiversity with tested Methods. Gaia, 2005, 14, 69-72.	0.3	160
34	Influence of mowing on the persistence of two endangered large blue butterfly species. Journal of Applied Ecology, 2006, 43, 333-342.	1.9	157
35	Towards a Reflexive Turn in the Governance of Global Environmental Expertise. The Cases of the IPCC and the IPBES. Gaia, 2014, 23, 80-87.	0.3	155
36	Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Global Ecology and Biogeography, 2012, 21, 88-99.	2.7	152

#	Article	IF	CITATIONS
37	Identifying and prioritising services in European terrestrial and freshwater ecosystems. Biodiversity and Conservation, 2010, 19, 2791-2821.	1.2	146
38	Provision of ecosystem services is determined by human agency, not ecosystem functions. Four case studies. International Journal of Biodiversity Science, Ecosystem Services & Management, 2014, 10, 40-53.	2.9	141
39	Levers and leverage points for pathways to sustainability. People and Nature, 2020, 2, 693-717.	1.7	141
40	Biodiversity policy beyond economic growth. Conservation Letters, 2020, 13, e12713.	2.8	141
41	Ecosystem services and biodiversity conservation: concepts and a glossary. Biodiversity and Conservation, 2010, 19, 2773-2790.	1.2	137
42	Multiâ€generational longâ€distance migration of insects: studying the painted lady butterfly in the Western Palaearctic. Ecography, 2013, 36, 474-486.	2.1	137
43	Assessing bee species richness in two Mediterranean communities: importance of habitat type and sampling techniques. Ecological Research, 2011, 26, 969-983.	0.7	135
44	Landscape context and habitat type as drivers of bee diversity in European annual crops. Agriculture, Ecosystems and Environment, 2009, 133, 40-47.	2.5	134
45	Multiscale scenarios for nature futures. Nature Ecology and Evolution, 2017, 1, 1416-1419.	3.4	131
46	Linking Earth Observation and taxonomic, structural and functional biodiversity: Local to ecosystem perspectives. Ecological Indicators, 2016, 70, 317-339.	2.6	129
47	Butterfly mimics of ants. Nature, 2004, 432, 283-284.	13.7	104
48	Patterns of beta diversity in Europe: the role of climate, land cover and distance across scales. Journal of Biogeography, 2012, 39, 1473-1486.	1.4	104
49	Global mismatches in aboveground and belowground biodiversity. Conservation Biology, 2019, 33, 1187-1192.	2.4	103
50	Climate change impacts on pollination. Nature Plants, 2016, 2, 16092.	4.7	100
51	Global gaps in soil biodiversity data. Nature Ecology and Evolution, 2018, 2, 1042-1043.	3.4	99
52	Projecting trends in plant invasions in Europe under different scenarios of future landâ€use change. Global Ecology and Biogeography, 2012, 21, 75-87.	2.7	89
53	The structure of flower visitor networks in relation to pollination across an agricultural to urban gradient. Functional Ecology, 2017, 31, 838-847.	1.7	85
54	Population ecology of the endangered butterflies Maculinea teleius and M. nausithous and the implications for conservation. Population Ecology, 2005, 47, 193-202.	0.7	84

#	Article	IF	CITATIONS
55	Organic farming in isolated landscapes does not benefit flower-visiting insects and pollination. Biological Conservation, 2010, 143, 1860-1867.	1.9	84
56	Successful invaders co-opt pollinators of native flora and accumulate insect pollinators with increasing residence time. Ecological Monographs, 2011, 81, 277-293.	2.4	83
57	Effects of management cessation on grassland butterflies in southern Poland. Agriculture, Ecosystems and Environment, 2007, 121, 319-324.	2.5	82
58	Research needs for incorporating the ecosystem service approach into EU biodiversity conservation policy. Biodiversity and Conservation, 2010, 19, 2979-2994.	1.2	82
59	Insect Conservation. Science, 2009, 325, 41-42.	6.0	81
60	Land cover-based ecosystem service assessment of irrigated rice cropping systems in southeast Asia—An explorative study. Ecosystem Services, 2015, 14, 76-87.	2.3	79
61	Applying IUCN criteria to invertebrates: How red is the Red List of European butterflies?. Biological Conservation, 2011, 144, 470-478.	1.9	77
62	Promoting multiple ecosystem services with flower strips and participatory approaches in rice production landscapes. Basic and Applied Ecology, 2015, 16, 681-689.	1.2	77
63	Pollination services enhanced with urbanization despite increasing pollinator parasitism. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160561.	1.2	76
64	Habitat models and habitat connectivity analysis for butterflies and burnet moths – The example of Zygaena carniolica and Coenonympha arcania. Biological Conservation, 2005, 126, 247-259.	1.9	75
65	A model-based approach for designing cost-effective compensation payments for conservation of endangered species in real landscapes. Biological Conservation, 2007, 140, 174-186.	1.9	74
66	From metapopulation theory to conservation recommendations: Lessons from spatial occurrence and abundance patterns of Maculinea butterflies. Biological Conservation, 2007, 140, 119-129.	1.9	73
67	Protected areas do not mitigate biodiversity declines: A case study on butterflies. Diversity and Distributions, 2019, 25, 217-224.	1.9	73
68	Assessing the vulnerability of European butterflies to climate change using multiple criteria. Biodiversity and Conservation, 2010, 19, 695-723.	1.2	71
69	Butterfly dispersal in inhospitable matrix: rare, risky, but long-distance. Landscape Ecology, 2014, 29, 401-412.	1.9	71
70	Assessing ecosystem services for informing land-use decisions: a problem-oriented approach. Ecology and Society, 2015, 20, .	1.0	70
71	Estimating optimal conservation in the context of agri-environmental schemes. Ecological Economics, 2008, 68, 295-305.	2.9	67
72	Wolbachia Infections Mimic Cryptic Speciation in Two Parasitic Butterfly Species, Phengaris teleius and P. nausithous (Lepidoptera: Lycaenidae). PLoS ONE, 2013, 8, e78107.	1.1	65

#	Article	IF	CITATIONS
73	Butterfly Monitoring Methods: The ideal and the Real World. Israel Journal of Ecology and Evolution, 2008, 54, 69-88.	0.2	64
74	Developing European conservation and mitigation tools for pollination services: approaches of the STEP (Status and Trends of European Pollinators) project. Journal of Apicultural Research, 2011, 50, 152-164.	0.7	64
75	Understanding Forest Health with Remote Sensing, Part III: Requirements for a Scalable Multi-Source Forest Health Monitoring Network Based on Data Science Approaches. Remote Sensing, 2018, 10, 1120.	1.8	63
76	Landscape composition, configuration, and trophic interactions shape arthropod communities in rice agroecosystems. Journal of Applied Ecology, 2018, 55, 2461-2472.	1.9	62
77	Effective Biodiversity Monitoring Needs a Culture of Integration. One Earth, 2020, 3, 462-474.	3.6	62
78	Influence of landscape context on the abundance and diversity of bees in Mediterranean olive groves. Bulletin of Entomological Research, 2011, 101, 557-564.	0.5	58
79	Population structure of a large blue butterfly and its specialist parasitoid in a fragmented landscape. Molecular Ecology, 2007, 16, 3828-3838.	2.0	57
80	Scenarios for investigating risks to biodiversity. Global Ecology and Biogeography, 2012, 21, 5-18.	2.7	57
81	Host ant specificity of large blue butterflies Phengaris (Maculinea) (Lepidoptera: Lycaenidae) inhabiting humid grasslands in East-central Europe. European Journal of Entomology, 2008, 105, 871-877.	1.2	57
82	Transformation of agricultural landscapes in the Anthropocene: Nature's contributions to people, agriculture and food security. Advances in Ecological Research, 2020, 63, 193-253.	1.4	56
83	Dos and Don'ts for butterflies of the Habitats Directive of the European Union. Nature Conservation, 0, 1, 73-153.	0.0	56
84	Securing the Conservation of Biodiversity across Administrative Levels and Spatial, Temporal, and Ecological Scales – Research Needs and Approaches of the <i>SCALES</i> Project. Gaia, 2010, 19, 187-193.	0.3	54
85	Stakeholder involvement in ESS research and governance: Between conceptual ambition and practical experiences – risks, challenges and tested tools. Ecosystem Services, 2015, 16, 201-211.	2.3	54
86	Integrating agroecological production in a robust post-2020 Global Biodiversity Framework. Nature Ecology and Evolution, 2020, 4, 1150-1152.	3.4	54
87	Less input same output: simplified approach for population size assessment in Lepidoptera. Population Ecology, 2005, 47, 203-212.	0.7	53
88	Escaping the lock-in of continuous insecticide spraying in rice: Developing an integrated ecological and socio-political DPSIR analysis. Ecological Modelling, 2015, 295, 188-195.	1.2	51
89	Actions to halt biodiversity loss generally benefit the climate. Global Change Biology, 2022, 28, 2846-2874.	4.2	51
90	Polymorphic growth in larvae of Maculinea butterflies, as an example of biennialism in myrmecophilous insects. Oecologia, 2006, 148, 729-733.	0.9	50

#	Article	IF	CITATIONS
91	CLIMBER: Climatic niche characteristics ofÂtheÂbutterflies in Europe. ZooKeys, 2014, 367, 65-84.	0.5	50
92	"Things are different nowâ€! Farmer perceptions of cultural ecosystem services of traditional rice landscapes in Vietnam and the Philippines. Ecosystem Services, 2017, 25, 153-166.	2.3	50
93	Mosaic cycles in agricultural landscapes of Northwest Europe. Basic and Applied Ecology, 2007, 8, 295-309.	1.2	49
94	Value pluralism and economic valuation – defendable if well done. Ecosystem Services, 2016, 18, 100-109.	2.3	48
95	A regionally informed abundance index for supporting integrative analyses across butterfly monitoring schemes. Journal of Applied Ecology, 2016, 53, 501-510.	1.9	47
96	Agricultural landscapes and ecosystem services in South-East Asia—the LEGATO-Project. Basic and Applied Ecology, 2015, 16, 661-664.	1.2	46
97	A new comprehensive trait database of European and Maghreb butterflies, Papilionoidea. Scientific Data, 2020, 7, 351.	2.4	45
98	The Network of Knowledge approach: improving the science and society dialogue on biodiversity and ecosystem services in Europe. Biodiversity and Conservation, 2016, 25, 1215-1233.	1.2	44
99	Getting the Public Involved in Butterfly Conservation: Lessons Learned from a New Monitoring Scheme in Germany. Israel Journal of Ecology and Evolution, 2008, 54, 89-103.	0.2	43
100	Do all inter-patch movements represent dispersal? A mixed kernel study of butterfly mobility in fragmented landscapes. Journal of Animal Ecology, 2011, 80, 1070-1077.	1.3	43
101	Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model. PLoS ONE, 2018, 13, e0188269.	1.1	43
102	Diversity of wild bees in wet meadows: Implications for conservation. Wetlands, 2008, 28, 975-983.	0.7	42
103	Pathways for Novel Epidemiology: Plant–Pollinator–Pathogen Networks and Global Change. Trends in Ecology and Evolution, 2021, 36, 623-636.	4.2	41
104	Patterns of host use by brood parasitic <i>Maculinea</i> butterflies across Europe. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180202.	1.8	40
105	Integrating national Red Lists for prioritising conservation actions for European butterflies. Journal of Insect Conservation, 2019, 23, 301-330.	0.8	38
106	Science-Policy Interface: Beyond Assessments. Science, 2011, 333, 697-698.	6.0	36
107	Resilience and adaptability of rice terrace social-ecological systems: a case study of a local community's perception in Banaue, Philippines. Ecology and Society, 2016, 21, .	1.0	35
108	Transdisciplinary research in support of land and water management in China and Southeast Asia: evaluation of four research projects. Sustainability Science, 2016, 11, 813-829.	2.5	35

#	Article	IF	CITATIONS
109	A software tool for designing cost-effective compensation payments for conservation measures. Environmental Modelling and Software, 2008, 23, 122-123.	1.9	34
110	Different flight behaviour of the endangered scarce large blue butterfly Phengaris teleius (Lepidoptera: Lycaenidae) within and outside its habitat patches. Landscape Ecology, 2013, 28, 533-546.	1.9	34
111	Disentangling Values in the Interrelations between Cultural Ecosystem Services and Landscape Conservation—A Case Study of the Ifugao Rice Terraces in the Philippines. Land, 2015, 4, 888-913.	1.2	33
112	Investigating potential transferability of place-based research in land system science. Environmental Research Letters, 2016, 11, 095002.	2.2	33
113	The impact of Solanum elaeagnifolium, an invasive plant in the Mediterranean, on the flower visitation and seed set of the native co-flowering species Glaucium flavum. Plant Ecology, 2009, 205, 77-85.	0.7	32
114	Mimetic host shifts in an endangered social parasite of ants. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122336.	1.2	32
115	The need for largeâ€scale distribution data to estimate regional changes in species richness under future climate change. Diversity and Distributions, 2017, 23, 1393-1407.	1.9	32
116	A mowing experiment to evaluate the influence of management on the activity of host ants of Maculinea butterflies. Journal of Insect Conservation, 2008, 12, 617-627.	0.8	31
117	Not the Right Time to Amend the Annexes of the European Habitats Directive. Conservation Letters, 2013, 6, 468-469.	2.8	31
118	Compensatory mechanisms of litter decomposition under alternating moisture regimes in tropical rice fields. Applied Soil Ecology, 2016, 107, 79-90.	2.1	31
119	Predator–prey interactions in rice ecosystems: effects of guild composition, trophic relationships, and land use changes — a model study exemplified for Philippine rice terraces. Ecological Modelling, 2001, 137, 135-159.	1.2	30
120	Engaging Local Knowledge in Biodiversity Research: Experiences from Large Inter- and Transdisciplinary Projects. Interdisciplinary Science Reviews, 2014, 39, 323-341.	1.0	29
121	Regional-scale effects override the influence of fine-scale landscape heterogeneity on rice arthropod communities. Agriculture, Ecosystems and Environment, 2017, 246, 269-278.	2.5	29
122	Hopper parasitoids do not significantly benefit from non-crop habitats in rice production landscapes. Agriculture, Ecosystems and Environment, 2018, 254, 224-232.	2.5	29
123	Local host ant specificity of <i>Phengaris</i> (<i>Maculinea</i>) <i>teleius</i> butterfly, an obligatory social parasite of <i>Myrmica</i> ants. Ecological Entomology, 2010, 35, 557-564.	1.1	28
124	Pollinator community responses to the spatial population structure of wild plants: A pan-European approach. Basic and Applied Ecology, 2012, 13, 489-499.	1.2	28
125	Plant-pollinator interactions and bee functional diversity are driven by agroforests in rice-dominated landscapes. Agriculture, Ecosystems and Environment, 2018, 253, 140-147.	2.5	28
126	Connectivity compensates for low habitat quality and small patch size in the butterfly Cupido minimus. Ecological Research, 2008, 23, 259-269.	0.7	27

#	Article	IF	CITATIONS
127	Host plant availability potentially limits butterfly distributions under cold environmental conditions. Ecography, 2014, 37, 301-308.	2.1	27
128	A sown grass cover enriched with wild forb plants improves the biological control of aphids in citrus. Basic and Applied Ecology, 2016, 17, 210-219.	1.2	26
129	Identifying governance challenges in ecosystem services management – Conceptual considerations and comparison of global forest cases. Ecosystem Services, 2018, 32, 193-203.	2.3	26
130	No Experimental Evidence for Host Ant Related Oviposition in a Parasitic Butterfly. Journal of Insect Behavior, 2006, 19, 631-643.	0.4	25
131	Terrestrial and Inland Water Systems. , 0, , 271-360.		25
132	Small-scale variability in the contribution of invertebrates to litter decomposition in tropical rice fields. Basic and Applied Ecology, 2015, 16, 674-680.	1.2	25
133	Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data. Conservation Biology, 2020, 34, 666-676.	2.4	25
134	Acoustic communication within ant societies and its mimicry by mutualistic and socially parasitic myrmecophiles. Animal Behaviour, 2017, 134, 249-256.	0.8	24
135	CR1 clade of non-LTR retrotransposons from Maculinea butterflies (Lepidoptera: Lycaenidae): evidence for recent horizontal transmission. BMC Evolutionary Biology, 2007, 7, 93.	3.2	23
136	Modelling potential success of conservation translocations of a specialist grassland butterfly. Biological Conservation, 2015, 192, 200-206.	1.9	23
137	Enhancing theÂparasitism of insect herbivores through diversification of habitat in Philippine rice fields. Paddy and Water Environment, 2018, 16, 379-390.	1.0	23
138	Microsatellite markers for the large blue butterflies Maculinea nausithous and Maculinea alcon (Lepidoptera: Lycaenidae) and their amplification in other Maculinea species. Molecular Ecology Notes, 2005, 5, 165-168.	1.7	22
139	The impact of an insecticide on insect flower visitation and pollination in an agricultural landscape. Agricultural and Forest Entomology, 2010, 12, 259-266.	0.7	22
140	Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community. PLoS ONE, 2015, 10, e0134402.	1.1	22
141	Blockchain with Artificial Intelligence to Efficiently Manage Water Use under Climate Change. Environments - MDPI, 2018, 5, 34.	1.5	22
142	Myrmica host-ants limit the density of the ant-predatory large blue Maculinea nausithous. Journal of Insect Conservation, 2008, 12, 511-517.	0.8	21
143	Pesticide diversity in rice growing areas of Northern Vietnam. Paddy and Water Environment, 2018, 16, 339-352.	1.0	21

Morphology of caterpillars and pupae of European <i>Maculinea</i> species (Lepidoptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

#	Article	IF	CITATIONS
145	Butterflies in and for conservation: Trends and Prospects. Israel Journal of Ecology and Evolution, 2008, 54, 7-17.	0.2	20
146	Uncertainty in thermal tolerances and climatic debt. Nature Climate Change, 2012, 2, 638-639.	8.1	20
147	Rice ecosystem services in South-east Asia. Paddy and Water Environment, 2018, 16, 211-224.	1.0	20
148	Conservation biological control: Improving the science base. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8241-8243.	3.3	20
149	Is there hope for sustainable management of golden apple snails, a major invasive pest in irrigated rice?. Njas - Wageningen Journal of Life Sciences, 2016, 79, 11-21.	7.9	19
150	The generality of habitat suitability models: A practical test with two insect groups. Basic and Applied Ecology, 2007, 8, 310-320.	1.2	18
151	On the conservation biology of a Chinese population of the birdwing Troides aeacus (Lepidoptera:) Tj ETQq1 1 0.	.784314 r 0.8	gB <u>T</u> /Overloc
152	Scenarios as a tool for largeâ€scale ecological research: experiences and legacy of the ALARM project. Global Ecology and Biogeography, 2012, 21, 1-4.	2.7	18
153	Biodiversity and food security: from trade-offs to synergies. Regional Environmental Change, 2017, 17, 1257-1259.	1.4	17
154	Understanding cultural ecosystem services related to farmlands: Expert survey in Europe. Land Use Policy, 2021, 100, 104900.	2.5	17
155	Life history, life table, habitat, and conservation of Byasa impediens (Lepidoptera: Papilionidae). Acta Ecologica Sinica, 2006, 26, 3184-3197.	0.9	16
156	Development of parasitic Maculinea teleius (Lepidoptera, Lycaenidae) larvae in laboratory nests of four Myrmica ant host species. Insectes Sociaux, 2011, 58, 403-411.	0.7	16
157	Bee conservation: Inclusive solutions. Science, 2018, 360, 389-390.	6.0	16
158	The social fabric of citizen science—drivers for long-term engagement in the German butterfly monitoring scheme. Journal of Insect Conservation, 2018, 22, 731-743.	0.8	16
159	Understanding the relationship between volunteers' motivations and learning outcomes of Citizen Science in rice ecosystems in the Northern Philippines. Paddy and Water Environment, 2018, 16, 725-735.	1.0	16
160	Pesticides and land cover heterogeneity affect functional group and taxonomic diversity of arthropods in rice agroecosystems. Agriculture, Ecosystems and Environment, 2020, 297, 106927.	2.5	16
161	Genetic Population Structure and Reproductive Fitness in the Plant <i>Sanguisorba officinalis</i> in Populations Supporting Colonies of an Endangered <i>Maculinea</i> Butterfly. International Journal of Plant Sciences, 2008, 169, 253-262.	0.6	15
162	The Rare Butterfly <i>Tomares Nesimachus</i> (Lycaenidae) as a Bioindicator for Pollination Services and Ecosystem Functioning in Northern Israel. Israel Journal of Ecology and Evolution, 2008, 54, 111-136.	0.2	14

#	Article	IF	CITATIONS
163	The effect of conservation efforts on morphological asymmetry in a butterfly population. Journal for Nature Conservation, 2011, 19, 161-165.	0.8	14
164	A butterfly hotspot in western China, its environmental threats and conservation. Journal of Insect Conservation, 2011, 15, 617-632.	0.8	14
165	Metapopulationsanalyse auf Rasterdatenbasis. , 1998, , .		14
166	Factors influencing Nosema bombi infections in natural populations of Bombus terrestris (Hymenoptera: Apidae). Journal of Invertebrate Pathology, 2012, 110, 48-53.	1.5	13
167	Ecological traps and species distribution models: a challenge for prioritizing areas of conservation importance. Ecography, 2020, 43, 365-375.	2.1	13
168	Aspects of the Population Vulnerability of the Large Blue Butterfly, Glaucopsyche (Maculinea) Arion, in South-West Germany. Geospatial Technology and the Role of Location in Science, 1996, , 275-281.	0.2	13
169	Food security: A role for Europe. Nature, 2011, 480, 39-39.	13.7	12
170	A novel tool to assess the effect of intraspecific spatial niche variation on species distribution shifts under climate change. Global Ecology and Biogeography, 2020, 29, 590-602.	2.7	12
171	Key impacts of climate engineering on biodiversity and ecosystems, with priorities for future research. Journal of Integrative Environmental Sciences, 0, , 1-26.	1.0	11
172	Doing what with whom? Stakeholder analysis in a large transdisciplinary research project in South-East Asia. Paddy and Water Environment, 2018, 16, 321-337.	1.0	11
173	The LEGATO cross-disciplinary integrated ecosystem service research framework: an example of integrating research results from the analysis of global change impacts and the social, cultural and economic system dynamics of irrigated rice production. Paddy and Water Environment, 2018, 16, 287-319.	1.0	11
174	Reducing Pesticides and Increasing Crop Diversification Offer Ecological and Economic Benefits for Farmers—A Case Study in Cambodian Rice Fields. Insects, 2021, 12, 267.	1.0	11
175	Switch to ecological engineering would aid independence. Nature, 2008, 456, 570-570.	13.7	10
176	Invasive weed facilitates incidence of Colorado potato beetle on potato crop. International Journal of Pest Management, 2009, 55, 165-173.	0.9	10
177	Establishment of a cross-European field site network in the ALARM project for assessing large-scale changes in biodiversity. Environmental Monitoring and Assessment, 2010, 164, 337-348.	1.3	10
178	Singing the blues: from experimental biology to conservation application. Journal of Experimental Biology, 2011, 214, 1407-1410.	0.8	10
179	Longâ€distance dispersal and habitat use of the butterfly <i>Byasa impediens</i> in a fragmented subtropical forest. Insect Conservation and Diversity, 2013, 6, 170-178.	1.4	10
180	BMC Ecology image competition: the winning images. BMC Ecology, 2013, 13, 6.	3.0	10

#	Article	IF	CITATIONS
181	MACIS: Minimisation of and Adaptation to Climate Change Impacts on Biodiversity. Gaia, 2008, 17, 393-395.	0.3	10
182	Confronting and Coping with Uncertainty in Biodiversity Research and Praxis. Nature Conservation, 0, 8, 45-75.	0.0	10
183	Landscape heterogeneity filters functional traits of rice arthropods in tropical agroecosystems. Ecological Applications, 2022, 32, e2560.	1.8	10
184	A framework for a European network for a systematic environmental impact assessment of genetically modified organisms (GMO). BioRisk, 2012, 7, 73-97.	0.2	9
185	Evidence-Based Environmental Laws for China. Science, 2013, 341, 958-958.	6.0	9
186	Choice behaviour of Myrmica rubra workers between ant larvae and larvae of their Phengaris (Maculinea) nausithous nest parasites. Insectes Sociaux, 2013, 60, 57-64.	0.7	9
187	BMC Ecology image competition 2014: the winning images. BMC Ecology, 2014, 14, 24.	3.0	9
188	Spatial patterns of host exploitation in a larval parasitoid of the predatory dusky large blue Maculinea nausithous. Basic and Applied Ecology, 2007, 8, 66-74.	1.2	8
189	Populations with Explicit Borders in Space and Time: Concept, Terminology, and Estimation of Characteristic Parameters. Acta Biotheoretica, 2007, 55, 305-316.	0.7	8
190	BMC Ecology Image Competition 2015: the winning images. BMC Ecology, 2015, 15, 22.	3.0	8
191	IPBES Promotes Integration of Multiple Threats to Biodiversity. Trends in Ecology and Evolution, 2019, 34, 969-970.	4.2	8
192	Resource availability drives trait composition of butterfly assemblages. Oecologia, 2019, 190, 913-926.	0.9	8
193	Movements and flight morphology in the endangered Large Blue butterflies. Open Life Sciences, 2013, 8, 662-669.	0.6	7
194	Tetracosane on the cuticle of the parasitic butterfly <i><scp>P</scp>hengaris (<scp>M</scp>aculinea) nausithous</i> triggers the first contact in the adoption process by <i><scp>M</scp>yrmica rubra</i> foragers. Physiological Entomology, 2015, 40, 10-17.	0.6	7
195	Distribution and habitats of Phengaris (Maculinea) butterflies and population ecology of Phengaris teleius in China. Journal of Insect Conservation, 2016, 20, 1-10.	0.8	7
196	Applicability of butterfly transect counts to estimate species richness in different parts of the palaearctic region. Ecological Indicators, 2018, 95, 735-740.	2.6	7
197	Species richness of Eurasian Zephyrus hairstreaks (Lepidoptera: Lycaenidae: Theclini) with implications on historical biogeography: An NDM/VNDM approach. PLoS ONE, 2018, 13, e0191049.	1.1	7
198	Opportunities to improve China's biodiversity protection laws. Nature Ecology and Evolution, 2021, 5, 726-732.	3.4	7

#	Article	IF	CITATIONS
199	Summary for policymakers. , 2014, , 23-32.		7
200	Large projects can create useful partnerships. Nature, 2008, 453, 850-850.	13.7	6
201	Interacting global change drivers. Nature Climate Change, 2015, 5, 913-914.	8.1	6
202	BMC Ecology Image Competition 2016: the winning images. BMC Ecology, 2016, 16, 34.	3.0	6
203	No inflation of threatened species. Science, 2019, 365, 767-767.	6.0	6
204	The Hilly Landscape of Halle - Main Study Area of the FIFB. Geospatial Technology and the Role of Location in Science, 1996, , 161-168.	0.2	6
205	Corrigenda: Climatic Risk Atlas of European Butterflies. BioRisk, 0, 2, 33-72.	0.2	6
206	Ecological Engineering for Rice Insect Pest Management: The Need to Communicate Widely, Improve Farmers' Ecological Literacy and Policy Reforms to Sustain Adoption. Agronomy, 2021, 11, 2208.	1.3	6
207	Biofuels: Steer Clear of Degraded Land. Science, 2009, 326, 1346-1346.	6.0	5
208	The importance of resource distribution: spatial co-occurrence of host plants and host ants coincides with increased egg densities of the Dusky Large Blue Maculinea nausithous (Lepidoptera:) Tj ETQq0 0	0 r gBa⊺ /O∖	verlack 10 Tf 5
209	BMC ecology image competition 2017: the winning images. BMC Ecology, 2017, 17, 28.	3.0	5
210	Proposal for an index to evaluate dichotomous keys. ZooKeys, 2017, 685, 83-89.	0.5	5
211	BiodiversitÃæmonitoring in Deutschland: Wie Wissenschaft, Politik und Zivilgesellschaft ein nationales Monitoring unterstützen können. Gaia, 2019, 28, 265-270.	0.3	5
212	Investments' role in ecosystem degradation—Response. Science, 2020, 368, 377-377.	6.0	5
213	Is the EC Afraid of Its Own Visions?. Science, 2007, 315, 1220-1220.	6.0	5
214	Notes on and key to the genus Phengaris (s. str.) (Lepidoptera, Lycaenidae) from mainland China with description of a new species. ZooKeys, 0, 48, 21-28.	0.5	4
215	Forest management and its impact on present and potential future Chinese insect biodiversity—A butterfly case study from Gansu Province. Journal for Nature Conservation, 2011, 19, 285-295.	0.8	4
216	BMC ecology image competition 2018: the winning images. BMC Ecology, 2019, 19, 11.	3.0	4

#	Article	IF	CITATIONS
217	On the Ecology and Conservation of Sericinus montelus (Lepidoptera: Papilionidae) – Its Threats in Xiaolongshan Forests Area (China). PLoS ONE, 2016, 11, e0150833.	1.1	4

Nine polymorphic microsatellite loci for the parasitic wasp Neotypus melanocephalus (Hymenoptera:) Tj ETQq0 0 0.rgBT /Overlock 10 Tf

219	Ecologists should join astronomers to oppose light pollution. Nature, 2009, 457, 379-379.	13.7	3
220	Climate change impacts on biodiversity: a short introduction with special emphasis on the ALARM approach for the assessment of multiple risks. BioRisk, 0, 5, 3-29.	0.2	3
221	Performance and response to defoliation of Sanguisorba officinalis (Rosaceae) seedlings from mown and successional habitats. Botany, 2010, 88, 691-697.	0.5	3
222	The social parasite Phengaris (Maculinea) nausithous affects genetic diversity within Myrmica rubra host ant colonies. Journal of Insect Conservation, 2014, 18, 69-75.	0.8	3
223	From science to application: field demonstrations to enhance sustainable rice production in the north of Vietnam—lessons from the LEGATO project. Paddy and Water Environment, 2018, 16, 353-358.	1.0	3
224	Seventh BMC ecology image competition: the winning images. BMC Ecology, 2020, 20, 42.	3.0	3
225	Inaugural BMC Ecology and Evolution image competition: the winning images. Bmc Ecology and Evolution, 2021, 21, 157.	0.7	3
226	Train artificial intelligence to be fair to farming. Nature, 2017, 552, 334-334.	13.7	3
227	Bioclimatic context of species' populations determines community stability. Global Ecology and Biogeography, 2022, 31, 1542-1555.	2.7	3
228	The Age of Man: Outpacing Evolution. Science, 2013, 340, 1287-1287.	6.0	2
229	Ecoregional and Archetypical Considerations for National Responses to Food Security under Climate Change. Environments - MDPI, 2018, 5, 32.	1.5	2
230	Evaluating Presence Data versus Expert Opinions to Assess Occurrence, Habitat Preferences and Landscape Permeability: A Case Study of Butterflies. Environments - MDPI, 2018, 5, 36.	1.5	2
231	Rice Ecosystem Services in South-East Asia: The LEGATO Project, Its Approaches and Main Results with a Focus on Biocontrol Services. , 2019, , 373-382.		2
232	Biodiversity and the Loss of Biodiversity Affecting Human Health. , 2019, , 340-350.		2
233	Religion and science: boost sustainability. Nature, 2016, 538, 459-459.	13.7	1
234	Vascular plant species diversity in Southeast Asian rice ecosystems is determined by climate and soil conditions as well as the proximity of non-paddy habitats. Agriculture, Ecosystems and Environment, 2021, 314, 107346.	2.5	1

#	Article	IF	CITATIONS
235	Biodiversity and Our Future – New Alliances for New Policies?. Gaia, 2010, 19, 161-161.	0.3	1
236	Biodiversity impacts of climate change – the PRONAS software as educational tool. Web Ecology, 2015, 15, 49-58.	0.4	1
237	Journal of Insect Conservation's special issue on insect diversity in Agriculture. Journal of Insect Conservation, 0, , .	0.8	1
238	Biodiversity and the Loss of Biodiversity Affecting Human Health. , 2011, , 353-362.		0
239	Safeguard species in warming flatlands. Nature, 2013, 502, 303-303.	13.7	0
240	Two sentences to impress. Nature, 2013, 496, 169-169.	13.7	0
241	Change of identity is not in the air. Nature, 2016, 534, 179-179.	13.7	0
242	Consumption-Based Blockchain Accounting of Telecoupled Global Land Resource Debtors and Creditors. Environments - MDPI, 2018, 5, 51.	1.5	0
243	Comparison of genetic patterns between European and Asian populations of an endangered butterfly species. Insect Conservation and Diversity, 2021, 14, 67-80.	1.4	0
244	Biodiversitä , 2017, , 151-160.		0
245	CAN THE SDGS HELP TO ESTABLISH RESEARCH-SCHOOL COLLABORATION?. , 2019, , .		0
246	Les insectes en chute libre. Pourlascience Fr, 2019, Nº 503 - septembre, 26-34.	0.0	0