Gareth B Miles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6522678/publications.pdf

Version: 2024-02-01

42 papers 2,420 citations

331670
21
h-index

302126 39 g-index

59 all docs

59 docs citations

59 times ranked 2873 citing authors

#	Article	IF	Citations
1	A Cluster of Cholinergic Premotor Interneurons Modulates Mouse Locomotor Activity. Neuron, 2009, 64, 645-662.	8.1	378
2	Spinal cholinergic interneurons regulate the excitability of motoneurons during locomotion. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2448-2453.	7.1	264
3	Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability. Nature Communications, 2015, 6, 5999.	12.8	241
4	Functional Properties of Motoneurons Derived from Mouse Embryonic Stem Cells. Journal of Neuroscience, 2004, 24, 7848-7858.	3.6	200
5	C9ORF72 repeat expansion causes vulnerability of motor neurons to Ca2+-permeable AMPA receptor-mediated excitotoxicity. Nature Communications, 2018, 9, 347.	12.8	151
6	Neuromodulation of Vertebrate Locomotor Control Networks. Physiology, 2011, 26, 393-411.	3.1	100
7	Motoneurons Derived from Embryonic Stem Cells Express Transcription Factors and Develop Phenotypes Characteristic of Medial Motor Column Neurons. Journal of Neuroscience, 2006, 26, 3256-3268.	3.6	96
8	Transplanted Mouse Embryonic Stem-Cell-Derived Motoneurons Form Functional Motor Units and Reduce Muscle Atrophy. Journal of Neuroscience, 2008, 28, 12409-12418.	3.6	93
9	Mutant <i>C9orf72</i> human iPSCâ€derived astrocytes cause nonâ€cell autonomous motor neuron pathophysiology. Glia, 2020, 68, 1046-1064.	4.9	90
10	Monitoring contractility in cardiac tissue with cellular resolution using biointegrated microlasers. Nature Photonics, 2020, 14, 452-458.	31.4	77
11	Arrays of microscopic organic LEDs for high-resolution optogenetics. Science Advances, 2016, 2, e1600061.	10.3	69
12	Anatomy and function of cholinergic <scp>C</scp> bouton inputs to motor neurons. Journal of Anatomy, 2014, 224, 52-60.	1.5	61
13	Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks. Journal of Neuroscience, 2017, 37, 906-921.	3.6	48
14	GluR2 AMPA Receptor Subunit Expression in Motoneurons at Low and High Risk for Degeneration in Amyotrophic Lateral Sclerosis. Experimental Neurology, 2001, 169, 461-471.	4.1	45
15	Lasing in Live Mitotic and Non-Phagocytic Cells by Efficient Delivery of Microresonators. Scientific Reports, 2017, 7, 40877.	3.3	41
16	Calcium binding proteins in motoneurons at low and high risk for degeneration in ALS. NeuroReport, 2000, 11, 3305-3308.	1.2	34
17	Modulation of phrenic motoneuron excitability by ATP: consequences for respiratory-related output in vitro. Journal of Applied Physiology, 2002, 92, 1899-1910.	2.5	29
18	Glial-derived adenosine modulates spinal motor networks in mice. Journal of Neurophysiology, 2012, 107, 1925-1934.	1.8	28

#	Article	IF	CITATIONS
19	Fast targeted gene transfection and optogenetic modification of single neurons using femtosecond laser irradiation. Scientific Reports, 2013, 3, 3281.	3.3	27
20	Stimulation of Glia Reveals Modulation of Mammalian Spinal Motor Networks by Adenosine. PLoS ONE, 2015, 10, e0134488.	2.5	26
21	Activation of group I metabotropic glutamate receptors modulates locomotor-related motoneuron output in mice. Journal of Neurophysiology, 2011, 105, 2108-2120.	1.8	25
22	Bi-Directional Communication Between Neurons and Astrocytes Modulates Spinal Motor Circuits. Frontiers in Cellular Neuroscience, 2020, 14, 30.	3.7	25
23	Photostimulation for In Vitro Optogenetics with Highâ€Power Blue Organic Lightâ€Emitting Diodes. Advanced Biology, 2019, 3, e1800290.	3.0	24
24	Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice. Journal of Neurophysiology, 2015, 114, 2305-2315.	1.8	22
25	Modulation of spinal motor networks by astrocyte-derived adenosine is dependent on D ₁ -like dopamine receptor signaling. Journal of Neurophysiology, 2018, 120, 998-1009.	1.8	22
26	Pitx2 cholinergic interneurons are the source of C bouton synapses on brainstem motor neurons. Scientific Reports, 2019, 9, 4936.	3.3	22
27	Nanostructural Diversity of Synapses in the Mammalian Spinal Cord. Scientific Reports, 2020, 10, 8189.	3.3	22
28	Synaptic mechanisms underlying modulation of locomotor-related motoneuron output by premotor cholinergic interneurons. ELife, 2020, 9, .	6.0	19
29	Differential expression of voltage-activated calcium channels in III and XII motoneurones during development in the rat. European Journal of Neuroscience, 2004, 20, 903-913.	2.6	17
30	Maturation of persistent and hyperpolarization-activated inward currents shapes the differential activation of motoneuron subtypes during postnatal development. ELife, 2021, 10, .	6.0	17
31	Long-term culture of SH-SY5Y neuroblastoma cells in the absence of neurotrophins: A novel model of neuronal ageing. Journal of Neuroscience Methods, 2021, 362, 109301.	2.5	16
32	Nitric oxide-mediated modulation of the murine locomotor network. Journal of Neurophysiology, 2014, 111, 659-674.	1.8	15
33	Balanced cholinergic modulation of spinal locomotor circuits via M2 and M3 muscarinic receptors. Scientific Reports, 2019, 9, 14051.	3.3	15
34	Selective vulnerability of tripartite synapses in amyotrophic lateral sclerosis. Acta Neuropathologica, 2022, 143, 471-486.	7.7	15
35	Gliotransmission and adenosinergic modulation: insights from mammalian spinal motor networks. Journal of Neurophysiology, 2017, 118, 3311-3327.	1.8	13
36	A common role for astrocytes in rhythmic behaviours?. Progress in Neurobiology, 2021, 202, 102052.	5.7	12

#	Article	IF	CITATIONS
37	Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks. Journal of Neuroscience, 2017, 37, 906-921.	3.6	10
38	Differential regulation of NMDA receptors by $\langle scp \rangle d \langle scp \rangle$ -serine and glycine in mammalian spinal locomotor networks. Journal of Neurophysiology, 2017, 117, 1877-1893.	1.8	8
39	Nonâ \in linear interaction between $\hat{l}\pm 1\hat{a}$ \in noradrenergic and P2 receptor signaling cascades in XII motoneurons (MNs). FASEB Journal, 2007, 21, A1295.	0.5	2
40	Microlaser-based contractility sensing in single cardiomyocytes and whole hearts. , 2019, , .		0
41	Microlaser-based contractility sensing in single cardiomyocytes and whole hearts. , 2019, , .		O
42	Deep tissue contractility sensing with biointegrated microlasers. , 2021, , .		0