Yongxing Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6522592/publications.pdf

Version: 2024-02-01

		304602	315616
37	2,374 citations	22	38
papers	citations	h-index	g-index
39	39	39	1453
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Responses of soil microbial community composition and enzyme activities to long-term organic amendments in a continuous tobacco cropping system. Applied Soil Ecology, 2022, 169, 104210.	2.1	27
2	Ecoenzymatic stoichiometry reveals phosphorus addition alleviates microbial nutrient limitation and promotes soil carbon sequestration in agricultural ecosystems. Journal of Soils and Sediments, 2022, 22, 536-546.	1.5	25
3	Microbial metabolic limitation of rhizosphere under heavy metal stress: Evidence from soil ecoenzymatic stoichiometry. Environmental Pollution, 2022, 300, 118978.	3.7	39
4	The mechanism of the dose effect of straw on soil respiration: Evidence from enzymatic stoichiometry and functional genes. Soil Biology and Biochemistry, 2022, 168, 108636.	4.2	22
5	Microbial metabolic limitation response to experimental warming along an altitudinal gradient in alpine grasslands, eastern Tibetan Plateau. Catena, 2022, 214, 106243.	2.2	19
6	Decreasing microbial phosphorus limitation increases soil carbon release. Geoderma, 2022, 419, 115868.	2.3	39
7	Review on migration, transformation and ecological impacts of microplastics in soil. Applied Soil Ecology, 2022, 176, 104486.	2.1	87
8	How the development of barren land into orchards affects soil ecosystem in Tibet, China. Pedosphere, 2022, 32, 616-628.	2.1	1
9	Consistent Plant and Microbe Nutrient Limitation Patterns During Natural Vegetation Restoration. Frontiers in Plant Science, 2022, 13, .	1.7	9
10	Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems. Plant and Soil, 2021, 458, 7-20.	1.8	107
11	Heavy metal pollution increases soil microbial carbon limitation: Evidence from ecological enzyme stoichiometry. Soil Ecology Letters, 2021, 3, 230-241.	2.4	21
12	Improvement of alfalfa resistance against Cd stress through rhizobia and arbuscular mycorrhiza fungi co-inoculation in Cd-contaminated soil. Environmental Pollution, 2021, 277, 116758.	3.7	78
13	Evaluation methods of heavy metal pollution in soils based on enzyme activities: A review. Soil Ecology Letters, 2021, 3, 169-177.	2.4	25
14	Stoichiometric models of microbial metabolic limitation in soil systems. Global Ecology and Biogeography, 2021, 30, 2297-2311.	2.7	64
15	Ecoenzymatic stoichiometry reveals microbial phosphorus limitation decreases the nitrogen cycling potential of soils in semi-arid agricultural ecosystems. Soil and Tillage Research, 2020, 197, 104463.	2.6	95
16	Phosphorus recovery by core-shell \hat{l}^3 -Al2O3/Fe3O4 biochar composite from aqueous phosphate solutions. Science of the Total Environment, 2020, 729, 138892.	3.9	68
17	A novel extracellular enzyme stoichiometry method to evaluate soil heavy metal contamination: Evidence derived from microbial metabolic limitation. Science of the Total Environment, 2020, 738, 139709.	3.9	45
18	Use of montmorillonite-enriched siltstone for improving water condition and plant growth in sandy soil. Ecological Engineering, 2020, 145, 105740.	1.6	10

#	Article	IF	Citations
19	Storage of Soil Organic Carbon and Its Spatial Variability in an Agro-Pastoral Ecotone of Northern China. Sustainability, 2020, 12, 2259.	1.6	4
20	Removal of Cd(II) and Cu(II) from Aqueous Solution by Na $<$ sup $>+<$ /sup $>-$ Modified Pisha Sandstone. Journal of Chemistry, 2020, 2020, 1-13.	0.9	6
21	Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biology and Biochemistry, 2020, 147, 107814.	4.2	140
22	Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils. Chemosphere, 2020, 254, 126724.	4.2	76
23	Revegetation pattern affecting accumulation of organic carbon and total nitrogen in reclaimed mine soils. PeerJ, 2020, 8, e8563.	0.9	7
24	Responses of soil bacterial communities, enzyme activities, and nutrients to agricultural-to-natural ecosystem conversion in the Loess Plateau, China. Journal of Soils and Sediments, 2019, 19, 1427-1440.	1.5	51
25	Natural grassland as the optimal pattern of vegetation restoration in arid and semi-arid regions: Evidence from nutrient limitation of soil microbes. Science of the Total Environment, 2019, 648, 388-397.	3.9	164
26	Application of signaling molecules in reducing metal accumulation in alfalfa and alleviating metal-induced phytotoxicity in Pb/Cd-contaminated soil. Ecotoxicology and Environmental Safety, 2019, 182, 109459.	2.9	31
27	Higher temporal turnover of soil fungi than bacteria during long-term secondary succession in a semiarid abandoned farmland. Soil and Tillage Research, 2019, 194, 104305.	2.6	58
28	Deciphering the rhizobium inoculation effect on spatial distribution of phosphatase activity in the rhizosphere of alfalfa under copper stress. Soil Biology and Biochemistry, 2019, 137, 107574.	4.2	47
29	Effects of Vegetation Restoration on Soil Bacterial Communities, Enzyme Activities, and Nutrients of Reconstructed Soil in a Mining Area on the Loess Plateau, China. Sustainability, 2019, 11, 2295.	1.6	23
30	Soil Aggregation and Aggregateâ€Associated Organic C and Total N as Affected by Revegetation Pattern at a Surface Mine on the Loess Plateau, China. Soil Science Society of America Journal, 2019, 83, 388-397.	1.2	11
31	Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region. Science of the Total Environment, 2019, 658, 1440-1451.	3.9	108
32	Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicology and Environmental Safety, 2019, 167, 218-226.	2.9	190
33	Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau. Geoderma, 2019, 338, 118-127.	2.3	139
34	Reveal the response of enzyme activities to heavy metals through in situ zymography. Ecotoxicology and Environmental Safety, 2018, 156, 106-115.	2.9	184
35	Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China. Soil Biology and Biochemistry, 2018, 116, 11-21.	4.2	243
36	Responses of soil microbial communities to nutrient limitation in the desert-grassland ecological transition zone. Science of the Total Environment, 2018, 642, 45-55.	3.9	94

3

Yongxing Cui

#	Article	IF	CITATIONS
37	Changes in Soil Physical and Chemical Properties following Surface Mining and Reclamation. Soil Science Society of America Journal, 2016, 80, 1476-1485.	1.2	14