Yongxing Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6522592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China. Soil Biology and Biochemistry, 2018, 116, 11-21.	8.8	243
2	Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicology and Environmental Safety, 2019, 167, 218-226.	6.0	190
3	Reveal the response of enzyme activities to heavy metals through in situ zymography. Ecotoxicology and Environmental Safety, 2018, 156, 106-115.	6.0	184
4	Natural grassland as the optimal pattern of vegetation restoration in arid and semi-arid regions: Evidence from nutrient limitation of soil microbes. Science of the Total Environment, 2019, 648, 388-397.	8.0	164
5	Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biology and Biochemistry, 2020, 147, 107814.	8.8	140
6	Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau. Geoderma, 2019, 338, 118-127.	5.1	139
7	Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region. Science of the Total Environment, 2019, 658, 1440-1451.	8.0	108
8	Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems. Plant and Soil, 2021, 458, 7-20.	3.7	107
9	Ecoenzymatic stoichiometry reveals microbial phosphorus limitation decreases the nitrogen cycling potential of soils in semi-arid agricultural ecosystems. Soil and Tillage Research, 2020, 197, 104463.	5.6	95
10	Responses of soil microbial communities to nutrient limitation in the desert-grassland ecological transition zone. Science of the Total Environment, 2018, 642, 45-55.	8.0	94
11	Review on migration, transformation and ecological impacts of microplastics in soil. Applied Soil Ecology, 2022, 176, 104486.	4.3	87
12	Improvement of alfalfa resistance against Cd stress through rhizobia and arbuscular mycorrhiza fungi co-inoculation in Cd-contaminated soil. Environmental Pollution, 2021, 277, 116758.	7.5	78
13	Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils. Chemosphere, 2020, 254, 126724.	8.2	76
14	Phosphorus recovery by core-shell γ-Al2O3/Fe3O4 biochar composite from aqueous phosphate solutions. Science of the Total Environment, 2020, 729, 138892.	8.0	68
15	Stoichiometric models of microbial metabolic limitation in soil systems. Global Ecology and Biogeography, 2021, 30, 2297-2311.	5.8	64
16	Higher temporal turnover of soil fungi than bacteria during long-term secondary succession in a semiarid abandoned farmland. Soil and Tillage Research, 2019, 194, 104305.	5.6	58
17	Responses of soil bacterial communities, enzyme activities, and nutrients to agricultural-to-natural ecosystem conversion in the Loess Plateau, China. Journal of Soils and Sediments, 2019, 19, 1427-1440.	3.0	51
18	Deciphering the rhizobium inoculation effect on spatial distribution of phosphatase activity in the rhizosphere of alfalfa under copper stress. Soil Biology and Biochemistry, 2019, 137, 107574.	8.8	47

Yongxing Cui

#	Article	IF	CITATIONS
19	A novel extracellular enzyme stoichiometry method to evaluate soil heavy metal contamination: Evidence derived from microbial metabolic limitation. Science of the Total Environment, 2020, 738, 139709.	8.0	45
20	Microbial metabolic limitation of rhizosphere under heavy metal stress: Evidence from soil ecoenzymatic stoichiometry. Environmental Pollution, 2022, 300, 118978.	7.5	39
21	Decreasing microbial phosphorus limitation increases soil carbon release. Geoderma, 2022, 419, 115868.	5.1	39
22	Application of signaling molecules in reducing metal accumulation in alfalfa and alleviating metal-induced phytotoxicity in Pb/Cd-contaminated soil. Ecotoxicology and Environmental Safety, 2019, 182, 109459.	6.0	31
23	Responses of soil microbial community composition and enzyme activities to long-term organic amendments in a continuous tobacco cropping system. Applied Soil Ecology, 2022, 169, 104210.	4.3	27
24	Evaluation methods of heavy metal pollution in soils based on enzyme activities: A review. Soil Ecology Letters, 2021, 3, 169-177.	4.5	25
25	Ecoenzymatic stoichiometry reveals phosphorus addition alleviates microbial nutrient limitation and promotes soil carbon sequestration in agricultural ecosystems. Journal of Soils and Sediments, 2022, 22, 536-546.	3.0	25
26	Effects of Vegetation Restoration on Soil Bacterial Communities, Enzyme Activities, and Nutrients of Reconstructed Soil in a Mining Area on the Loess Plateau, China. Sustainability, 2019, 11, 2295.	3.2	23
27	The mechanism of the dose effect of straw on soil respiration: Evidence from enzymatic stoichiometry and functional genes. Soil Biology and Biochemistry, 2022, 168, 108636.	8.8	22
28	Heavy metal pollution increases soil microbial carbon limitation: Evidence from ecological enzyme stoichiometry. Soil Ecology Letters, 2021, 3, 230-241.	4.5	21
29	Microbial metabolic limitation response to experimental warming along an altitudinal gradient in alpine grasslands, eastern Tibetan Plateau. Catena, 2022, 214, 106243.	5.0	19
30	Changes in Soil Physical and Chemical Properties following Surface Mining and Reclamation. Soil Science Society of America Journal, 2016, 80, 1476-1485.	2.2	14
31	Soil Aggregation and Aggregateâ€Associated Organic C and Total N as Affected by Revegetation Pattern at a Surface Mine on the Loess Plateau, China. Soil Science Society of America Journal, 2019, 83, 388-397.	2.2	11
32	Use of montmorillonite-enriched siltstone for improving water condition and plant growth in sandy soil. Ecological Engineering, 2020, 145, 105740.	3.6	10
33	Consistent Plant and Microbe Nutrient Limitation Patterns During Natural Vegetation Restoration. Frontiers in Plant Science, 2022, 13, .	3.6	9
34	Revegetation pattern affecting accumulation of organic carbon and total nitrogen in reclaimed mine soils. PeerJ, 2020, 8, e8563.	2.0	7
35	Removal of Cd(II) and Cu(II) from Aqueous Solution by Na ⁺ -Modified Pisha Sandstone. Journal of Chemistry, 2020, 2020, 1-13.	1.9	6
36	Storage of Soil Organic Carbon and Its Spatial Variability in an Agro-Pastoral Ecotone of Northern China. Sustainability, 2020, 12, 2259.	3.2	4

#	Article	IF	CITATIONS
37	How the development of barren land into orchards affects soil ecosystem in Tibet, China. Pedosphere, 2022, 32, 616-628.	4.0	1