
## M Bishr Omary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6522570/publications.pdf Version: 2024-02-01



M RISHD OMADY

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | New consensus nomenclature for mammalian keratins. Journal of Cell Biology, 2006, 174, 169-174.                                                                                                             | 2.3  | 630       |
| 2  | â€~Hard' and â€~soft' principles defining the structure, function and regulation of keratin intermediate<br>filaments. Current Opinion in Cell Biology, 2002, 14, 110-122.                                  | 2.6  | 614       |
| 3  | The pancreatic stellate cell: a star on the rise in pancreatic diseases. Journal of Clinical Investigation, 2007, 117, 50-59.                                                                               | 3.9  | 588       |
| 4  | Intermediate Filament Proteins and Their Associated Diseases. New England Journal of Medicine, 2004, 351, 2087-2100.                                                                                        | 13.9 | 434       |
| 5  | Post-translational modifications of intermediate filament proteins: mechanisms and functions.<br>Nature Reviews Molecular Cell Biology, 2014, 15, 163-177.                                                  | 16.1 | 409       |
| 6  | From Mallory to Mallory–Denk bodies: What, how and why?. Experimental Cell Research, 2007, 313, 2033-2049.                                                                                                  | 1.2  | 304       |
| 7  | â€~Heads and tails' of intermediate filament phosphorylation: multiple sites and functional insights.<br>Trends in Biochemical Sciences, 2006, 31, 383-394.                                                 | 3.7  | 258       |
| 8  | Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nature Cell Biology, 2003, 5, 803-811.                                               | 4.6  | 234       |
| 9  | Toward unraveling the complexity of simple epithelial keratins in human disease. Journal of Clinical<br>Investigation, 2009, 119, 1794-1805.                                                                | 3.9  | 231       |
| 10 | Epidemiology of Alcohol-Related Liver and Pancreatic Disease in the United States. Archives of Internal Medicine, 2008, 168, 649.                                                                           | 4.3  | 228       |
| 11 | Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments.<br>Trends in Cell Biology, 2005, 15, 608-617.                                                         | 3.6  | 227       |
| 12 | Apoptosis Generates Stable Fragments of Human Type I Keratins. Journal of Biological Chemistry, 1997, 272, 33197-33203.                                                                                     | 1.6  | 210       |
| 13 | Human cell-surface glycoprotein with unusual properties. Nature, 1980, 286, 888-891.                                                                                                                        | 13.7 | 196       |
| 14 | Keratin 8/18 breakdown and reorganization during apoptosis. Experimental Cell Research, 2004, 297,<br>11-26.                                                                                                | 1.2  | 177       |
| 15 | Extracellular Transglutaminase 2 Is Catalytically Inactive, but Is Transiently Activated upon Tissue<br>Injury. PLoS ONE, 2008, 3, e1861.                                                                   | 1.1  | 174       |
| 16 | Types I and II Keratin Intermediate Filaments. Cold Spring Harbor Perspectives in Biology, 2018, 10, a018275.                                                                                               | 2.3  | 171       |
| 17 | Keratin 8 Mutations in Patients with Cryptogenic Liver Disease. New England Journal of Medicine, 2001, 344, 1580-1587.                                                                                      | 13.9 | 163       |
| 18 | Keratin binding to 14-3-3 proteins modulates keratin filaments and hepatocyte mitotic progression.<br>Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4373-4378. | 3.3  | 162       |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Chemistry and Biology of Dihydroisoxazole Derivatives: Selective Inhibitors of Human<br>Transglutaminase 2. Chemistry and Biology, 2005, 12, 469-475.                                                                      | 6.2 | 154       |
| 20 | Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1. Science Signaling, 2015, 8, ra98.                                                                                   | 1.6 | 152       |
| 21 | A disease- and phosphorylation-related nonmechanical function for keratin 8. Journal of Cell Biology, 2006, 174, 115-125.                                                                                                  | 2.3 | 151       |
| 22 | Keratins Turn over by Ubiquitination in a Phosphorylation-Modulated Fashion. Journal of Cell<br>Biology, 2000, 149, 547-552.                                                                                               | 2.3 | 150       |
| 23 | Keratins let liver live: Mutations predispose to liver disease and crosslinking generates Mallory-Denk<br>bodies. Hepatology, 2007, 46, 1639-1649.                                                                         | 3.6 | 148       |
| 24 | Keratins: Guardians of the liver. Hepatology, 2002, 35, 251-257.                                                                                                                                                           | 3.6 | 143       |
| 25 | Gene Expression Profiling Reveals Stromal Genes Expressed in Common Between Barrett's Esophagus<br>and Adenocarcinoma. Gastroenterology, 2006, 131, 925-933.                                                               | 0.6 | 137       |
| 26 | "lF-pathies― a broad spectrum of intermediate filament–associated diseases. Journal of Clinical<br>Investigation, 2009, 119, 1756-1762.                                                                                    | 3.9 | 135       |
| 27 | The COVID-19 pandemic and research shutdown: staying safe and productive. Journal of Clinical Investigation, 2020, 130, 2745-2748.                                                                                         | 3.9 | 125       |
| 28 | Autophagy activation by rapamycin eliminates mouse Mallory-Denk bodies and blocks their proteasome inhibitor-mediated formation. Hepatology, 2008, 47, 2026-2035.                                                          | 3.6 | 119       |
| 29 | Keratins modulate colonocyte electrolyte transport via protein mistargeting. Journal of Cell Biology,<br>2004, 164, 911-921.                                                                                               | 2.3 | 118       |
| 30 | Keratin 8 Phosphorylation by Protein Kinase C δ Regulates Shear Stress-mediated Disassembly of Keratin<br>Intermediate Filaments in Alveolar Epithelial Cells. Journal of Biological Chemistry, 2005, 280,<br>30400-30405. | 1.6 | 114       |
| 31 | Keratin 8 Phosphorylation by p38 Kinase Regulates Cellular Keratin Filament Reorganization. Journal of Biological Chemistry, 2002, 277, 10775-10782.                                                                       | 1.6 | 113       |
| 32 | Hemin-activated macrophages home to the pancreas and protect from acute pancreatitis via heme oxygenase-1 induction. Journal of Clinical Investigation, 2005, 115, 3007-3014.                                              | 3.9 | 113       |
| 33 | Stress, Apoptosis, and Mitosis Induce Phosphorylation of Human Keratin 8 at Ser-73 in Tissues and<br>Cultured Cells. Journal of Biological Chemistry, 1997, 272, 17565-17573.                                              | 1.6 | 111       |
| 34 | Cytoskeletal keratin glycosylation protects epithelial tissue from injury. Nature Cell Biology, 2010, 12,<br>876-885.                                                                                                      | 4.6 | 111       |
| 35 | The cytoskeleton of digestive epithelia in health and disease. American Journal of Physiology - Renal<br>Physiology, 1999, 277, G1108-G1137.                                                                               | 1.6 | 109       |
| 36 | Wnt/β-Catenin Signaling Protects Mouse Liver against Oxidative Stress-induced Apoptosis through the<br>Inhibition of Forkhead Transcription Factor FoxO3. Journal of Biological Chemistry, 2013, 288,<br>17214-17224.      | 1.6 | 109       |

| #  | Article                                                                                                                                                                                                                                                   | lF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Ineffectual Type 2–to–Type 1 Alveolar Epithelial Cell Differentiation in Idiopathic Pulmonary Fibrosis:<br>Persistence of the KRT8 <sup>hi</sup> Transitional State. American Journal of Respiratory and Critical<br>Care Medicine, 2020, 201, 1443-1447. | 2.5 | 107       |
| 38 | The Intermediate Filament Protein Keratin 8 Is a Novel Cytoplasmic Substrate for c-Jun N-terminal<br>Kinase. Journal of Biological Chemistry, 2002, 277, 10767-10774.                                                                                     | 1.6 | 103       |
| 39 | Implications of intermediate filament protein phosphorylation. Cancer and Metastasis Reviews, 1996,<br>15, 429-444.                                                                                                                                       | 2.7 | 101       |
| 40 | Phosphorylation of Human Keratin 8 in Vivo at Conserved Head Domain Serine 23 and at Epidermal<br>Growth Factor-stimulated Tail Domain Serine 431. Journal of Biological Chemistry, 1997, 272, 7556-7564.                                                 | 1.6 | 97        |
| 41 | Keratin mutation in transgenic mice predisposes to Fas but not TNF-induced apoptosis and massive liver injury. Hepatology, 2003, 37, 1006-1014.                                                                                                           | 3.6 | 96        |
| 42 | Underrepresentation of Underrepresented Minorities in Academic Medicine: The Need to Enhance the<br>Pipeline and the Pipe. Gastroenterology, 2010, 138, 19-26.e3.                                                                                         | 0.6 | 96        |
| 43 | Keratin 8 and 18 mutations are risk factors for developing liver disease of multiple etiologies.<br>Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6063-6068.                                                | 3.3 | 95        |
| 44 | Keratins: Biomarkers and modulators of apoptotic and necrotic cell death in the liver. Hepatology, 2016, 64, 966-976.                                                                                                                                     | 3.6 | 95        |
| 45 | Structural heterogeneity of human Pgp-1 and its relationship with p85. Immunogenetics, 1988, 27, 460-464.                                                                                                                                                 | 1.2 | 93        |
| 46 | Mutation of a Major Keratin Phosphorylation Site Predisposes to Hepatotoxic Injury in Transgenic<br>Mice. Journal of Cell Biology, 1998, 143, 2023-2032.                                                                                                  | 2.3 | 93        |
| 47 | Functional Analysis of the Human Papillomavirus Type 16 E1 â^§ E4 Protein Provides a Mechanism for In<br>Vivo and In Vitro Keratin Filament Reorganization. Journal of Virology, 2004, 78, 821-833.                                                       | 1.5 | 90        |
| 48 | Hepatocyte Cytokeratins Are Hyperphosphorylated at Multiple Sites in Human Alcoholic Hepatitis and<br>in a Mallory Body Mouse Model. American Journal of Pathology, 2000, 156, 77-90.                                                                     | 1.9 | 89        |
| 49 | Keratin-8-deficient mice develop chronic spontaneous Th2 colitis amenable to antibiotic treatment.<br>Journal of Cell Science, 2005, 118, 1971-1980.                                                                                                      | 1.2 | 84        |
| 50 | Keratin 20 Helps Maintain Intermediate Filament Organization in Intestinal Epithelia. Molecular<br>Biology of the Cell, 2003, 14, 2959-2971.                                                                                                              | 0.9 | 83        |
| 51 | Absence of keratin 19 in mice causes skeletal myopathy with mitochondrial and sarcolemmal reorganization. Journal of Cell Science, 2007, 120, 3999-4008.                                                                                                  | 1.2 | 83        |
| 52 | Keratin 8 phosphorylation regulates keratin reorganization and migration of epithelial tumor cells.<br>Journal of Cell Science, 2012, 125, 2148-2159.                                                                                                     | 1.2 | 80        |
| 53 | Mouse hepatocyte overexpression of NFâ€̂PBâ€inducing kinase (NIK) triggers fatal macrophageâ€dependent<br>liver injury and fibrosis. Hepatology, 2014, 60, 2065-2076.                                                                                     | 3.6 | 80        |
| 54 | Keratin 8 and 18 hyperphosphorylation is a marker of progression of human liver disease. Hepatology,<br>2004, 40, 459-466.                                                                                                                                | 3.6 | 79        |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Lipogenic transcription factor ChREBP mediates fructose-induced metabolic adaptations to prevent hepatotoxicity. Journal of Clinical Investigation, 2017, 127, 2855-2867.                                                    | 3.9 | 79        |
| 56 | Bile salts induce or blunt cell proliferation in Barrett's esophagus in an acid-dependent fashion.<br>American Journal of Physiology - Renal Physiology, 2000, 278, G1000-G1009.                                             | 1.6 | 76        |
| 57 | Type II Keratins Are Phosphorylated on a Unique Motif during Stress and Mitosis in Tissues and<br>Cultured Cells. Molecular Biology of the Cell, 2002, 13, 1857-1870.                                                        | 0.9 | 76        |
| 58 | Studying Simple Epithelial Keratins in Cells and Tissues. Methods in Cell Biology, 2004, 78, 489-517.                                                                                                                        | 0.5 | 74        |
| 59 | Effect of Mutation and Phosphorylation of Type I Keratins on Their Caspase-mediated Degradation.<br>Journal of Biological Chemistry, 2001, 276, 26792-26798.                                                                 | 1.6 | 72        |
| 60 | Keratin Variants Predispose to Acute Liver Failure and Adverse Outcome: Race and Ethnic Associations.<br>Gastroenterology, 2010, 139, 828-835.e3.                                                                            | 0.6 | 72        |
| 61 | Spectrum of disease associated with partial lipodystrophy: lessons from a trial cohort. Clinical Endocrinology, 2017, 86, 698-707.                                                                                           | 1.2 | 72        |
| 62 | The hepatic BMAL1/AKT/lipogenesis axis protects against alcoholic liver disease in mice via promoting<br>PPARα pathway. Hepatology, 2018, 68, 883-896.                                                                       | 3.6 | 72        |
| 63 | Disturbances in hepatic cell-cycle regulation in mice with assembly-deficient keratins 8/18. Hepatology, 2001, 34, 1174-1183.                                                                                                | 3.6 | 68        |
| 64 | Protein phosphatase inhibition in normal and keratin 8/18 assembly-incompetent mouse strains supports a functional role of keratin intermediate filaments in preserving hepatocyte integrity. Hepatology, 1998, 28, 116-128. | 3.6 | 67        |
| 65 | Oxidative stress induces the endoplasmic reticulum stress and facilitates inclusion formation in cultured cells. Journal of Hepatology, 2007, 47, 93-102.                                                                    | 1.8 | 67        |
| 66 | Unique amino acid signatures that are evolutionarily conserved distinguish simple-type, epidermal and hair keratins. Journal of Cell Science, 2011, 124, 4221-4232.                                                          | 1.2 | 67        |
| 67 | Epitope Specificity of 30 Monoclonal Antibodies against Cytokeratin Antigens: The ISOBM TD5-1<br>Workshop. Tumor Biology, 1998, 19, 132-152.                                                                                 | 0.8 | 66        |
| 68 | Transglutaminase 2 Regulates Mallory Body Inclusion Formation and Injury-Associated Liver Enlargement. Gastroenterology, 2007, 132, 1515-1526.                                                                               | 0.6 | 66        |
| 69 | Keratins modulate the shape and function of hepatocyte mitochondria: a mechanism for protection from apoptosis. Journal of Cell Science, 2009, 122, 3851-3855.                                                               | 1.2 | 64        |
| 70 | Keratin 8 overexpression promotes mouse Mallory body formation. Journal of Cell Biology, 2005, 171, 931-937.                                                                                                                 | 2.3 | 63        |
| 71 | Keratin Hypersumoylation Alters Filament Dynamics and Is a Marker for Human Liver Disease and<br>Keratin Mutation. Journal of Biological Chemistry, 2011, 286, 2273-2284.                                                    | 1.6 | 63        |
| 72 | Keratins as Susceptibility Genes for End-Stage Liver Disease. Gastroenterology, 2005, 129, 885-893.                                                                                                                          | 0.6 | 62        |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Keratin variants associate with progression of fibrosis during chronic hepatitis C infection.<br>Hepatology, 2006, 43, 1354-1363.                                                                               | 3.6 | 62        |
| 74 | Identification and Mutational Analysis of the Glycosylation Sites of Human Keratin 18. Journal of<br>Biological Chemistry, 1995, 270, 11820-11827.                                                              | 1.6 | 57        |
| 75 | Keratin Mutation Predisposes to Mouse Liver Fibrosis and Unmasks Differential Effects of the Carbon<br>Tetrachloride and Thioacetamide Models. Gastroenterology, 2008, 134, 1169-1179.                          | 0.6 | 57        |
| 76 | Raf-1 activation disrupts its binding to keratins during cell stress. Journal of Cell Biology, 2004, 166,<br>479-485.                                                                                           | 2.3 | 53        |
| 77 | HIV-1 infection and expression in human colonic cells. Aids, 1991, 5, 275-282.                                                                                                                                  | 1.0 | 51        |
| 78 | Organ-specific stress induces mouse pancreatic keratin overexpression in association with NF-κB<br>activation. Journal of Cell Science, 2004, 117, 1709-1719.                                                   | 1.2 | 51        |
| 79 | Absence of keratin 8 confers a paradoxical microflora-dependent resistance to apoptosis in the colon.<br>Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1445-1450. | 3.3 | 49        |
| 80 | Gender Dimorphic Formation of Mouse Mallory–Denk Bodies and the Role of Xenobiotic Metabolism<br>and Oxidative Stress. Gastroenterology, 2010, 138, 1607-1617.                                                  | 0.6 | 46        |
| 81 | The genetic background modulates susceptibility to mouse liver Mallory-Denk body formation and liver injury. Hepatology, 2008, 48, 943-952.                                                                     | 3.6 | 45        |
| 82 | Identification of cytokeratins as accessory mediators of Salmonella entry into eukaryotic cellsâ~†. Life<br>Sciences, 2002, 70, 1415-1426.                                                                      | 2.0 | 44        |
| 83 | Keratin variants are overrepresented in primary biliary cirrhosis and associate with disease severity.<br>Hepatology, 2009, 50, 546-554.                                                                        | 3.6 | 44        |
| 84 | Porphyrin-Induced Protein Oxidation and Aggregation as a Mechanism of Porphyria-Associated Cell<br>Injury. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 535-548.                            | 2.3 | 44        |
| 85 | Panhematin provides a therapeutic benefit in experimental pancreatitis. Gut, 2011, 60, 671-679.                                                                                                                 | 6.1 | 41        |
| 86 | Keratin 8 absence down-regulates colonocyte HMGCS2 and modulates colonic ketogenesis and energy<br>metabolism. Molecular Biology of the Cell, 2015, 26, 2298-2310.                                              | 0.9 | 41        |
| 87 | Analysis of Keratin Polypeptides 8 and 19 Variants in Inflammatory Bowel Disease. Clinical<br>Gastroenterology and Hepatology, 2007, 5, 857-864.                                                                | 2.4 | 39        |
| 88 | The Hypoxia-Inducible Factor–C/EBPα Axis Controls Ethanol-Mediated Hepcidin Repression. Molecular<br>and Cellular Biology, 2012, 32, 4068-4077.                                                                 | 1.1 | 39        |
| 89 | Alternative splicing of human <i>NT5E</i> in cirrhosis and hepatocellular carcinoma produces a negative regulator of ecto-5′-nucleotidase (CD73). Molecular Biology of the Cell, 2014, 25, 4024-4033.           | 0.9 | 39        |
| 90 | Constitutive release of CPS1 in bile and its role as a protective cytokine during acute liver injury.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9125-9134. | 3.3 | 39        |

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Multifocal heterogeneity in villin and Ep-CAM expression in Barrett's esophagus. , 1996, 66, 48-54.                                                                                |     | 38        |
| 92  | Simple epithelial keratins are dispensable for cytoprotection in two pancreatitis models. American<br>Journal of Physiology - Renal Physiology, 2000, 279, G1343-G1354.            | 1.6 | 38        |
| 93  | Keratin mutation primes mouse liver to oxidative injury. Hepatology, 2005, 41, 517-525.                                                                                            | 3.6 | 38        |
| 94  | Mentoring the Mentor: Another Tool to Enhance Mentorship. Gastroenterology, 2008, 135, 13-16.                                                                                      | 0.6 | 38        |
| 95  | Characterization of the Major Physiologic Phosphorylation Site of Human Keratin 19 and Its Role in Filament Organization. Journal of Biological Chemistry, 1999, 274, 12861-12866. | 1.6 | 35        |
| 96  | Proteasome inhibition induces inclusion bodies associated with intermediate filaments and fragmentation of the Golgi apparatus. Experimental Cell Research, 2003, 288, 60-69.      | 1.2 | 35        |
| 97  | Keratin-8 null mice have different gallbladder and liver susceptibility to lithogenic diet-induced injury. Journal of Cell Science, 2003, 116, 4629-4638.                          | 1.2 | 35        |
| 98  | Toll Like Receptor 3 Plays a Critical Role in the Progression and Severity of Acetaminophen-Induced<br>Hepatotoxicity. PLoS ONE, 2013, 8, e65899.                                  | 1.1 | 35        |
| 99  | Keratin Overexpression Levels Correlate with the Extent of Spontaneous Pancreatic Injury. American<br>Journal of Pathology, 2008, 172, 882-892.                                    | 1.9 | 34        |
| 100 | Oxidative stress, Nrf2 and keratin up-regulation associate with Mallory-Denk body formation in mouse erythropoietic protoporphyria. Hepatology, 2012, 56, 322-331.                 | 3.6 | 34        |
| 101 | Glucose and SIRT2 reciprocally mediate the regulation of keratin 8 by lysine acetylation. Journal of Cell Biology, 2013, 200, 241-247.                                             | 2.3 | 34        |
| 102 | Keratin 8 modulates β-cell stress responses and normoglycaemia. Journal of Cell Science, 2013, 126, 5635-44.                                                                       | 1.2 | 34        |
| 103 | Keratin 20 Serine 13 Phosphorylation Is a Stress and Intestinal Goblet Cell Marker*. Journal of Biological Chemistry, 2006, 281, 16453-16461.                                      | 1.6 | 33        |
| 104 | Carbamoyl phosphate synthetase-1 is a rapid turnover biomarker in mouse and human acute liver<br>injury. American Journal of Physiology - Renal Physiology, 2014, 307, G355-G364.  | 1.6 | 33        |
| 105 | Keratin 18 overexpression but not phosphorylation or filament organization blocks mouse Mallory body formation. Hepatology, 2007, 45, 88-96.                                       | 3.6 | 32        |
| 106 | Energy determinants GAPDH and NDPK act as genetic modifiers for hepatocyte inclusion formation.<br>Journal of Cell Biology, 2011, 195, 217-229.                                    | 2.3 | 32        |
| 107 | Lamin aggregation is an early sensor of porphyria-induced liver injury. Journal of Cell Science, 2013, 126, 3105-12.                                                               | 1.2 | 32        |
| 108 | Protein phosphatase-2A associates with and dephosphorylates keratin 8 after hyposmotic stress in a site- and cell-specific manner. Journal of Cell Science, 2006, 119, 1425-1432.  | 1.2 | 31        |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Fibrinogen-γ proteolysis and solubility dynamics during apoptotic mouse liver injury: Heparin prevents<br>and treats liver damage. Hepatology, 2011, 53, 1323-1332.                             | 3.6 | 31        |
| 110 | Keratin 8 phosphorylation regulates its transamidation and hepatocyte Malloryâ€Denk body formation.<br>FASEB Journal, 2012, 26, 2318-2326.                                                      | 0.2 | 31        |
| 111 | Intermediate filament proteins of digestive organs: physiology and pathophysiology. American Journal of Physiology - Renal Physiology, 2017, 312, G628-G634.                                    | 1.6 | 31        |
| 112 | Increased coâ€first authorships in biomedical and clinical publications: a call for recognition. FASEB<br>Journal, 2013, 27, 3902-3904.                                                         | 0.2 | 30        |
| 113 | Lamins and Lamin-Associated Proteins in Gastrointestinal Health and Disease. Gastroenterology, 2018, 154, 1602-1619.e1.                                                                         | 0.6 | 30        |
| 114 | Rescue of atypical protein kinase C in epithelia by the cytoskeleton and Hsp70 family chaperones.<br>Journal of Cell Science, 2009, 122, 2491-2503.                                             | 1.2 | 29        |
| 115 | Mutation of keratin 18 caspase digestion sites interferes with filament reorganization and promotes hepatocyte leakiness and necrosis. Journal of Cell Science, 2014, 127, 1464-75.             | 1.2 | 29        |
| 116 | Loss of hepatocyte β-catenin protects mice from experimental porphyria-associated liver injury. Journal of Hepatology, 2019, 70, 108-117.                                                       | 1.8 | 29        |
| 117 | Aggregation and loss of cytokeratin filament networks inhibit Golgi organization in liver-derived epithelial cell lines. Cytoskeleton, 2004, 57, 37-52.                                         | 4.4 | 28        |
| 118 | p38 MAP Kinase and MAPKAP Kinases MK2/3 Cooperatively Phosphorylate Epithelial Keratins*. Journal of<br>Biological Chemistry, 2010, 285, 33242-33251.                                           | 1.6 | 28        |
| 119 | Hepatic NF-kB-inducing kinase (NIK) suppresses mouse liver regeneration in acute and chronic liver diseases. ELife, 2018, 7, .                                                                  | 2.8 | 28        |
| 120 | Ambient Light Promotes Selective Subcellular Proteotoxicity after Endogenous and Exogenous<br>Porphyrinogenic Stress. Journal of Biological Chemistry, 2015, 290, 23711-23724.                  | 1.6 | 27        |
| 121 | Hepatocyte-Specific Deletion of Mouse Lamin A/C Leads to Male-Selective Steatohepatitis. Cellular and<br>Molecular Gastroenterology and Hepatology, 2017, 4, 365-383.                           | 2.3 | 27        |
| 122 | From Intention to Action: Operationalizing AGA Diversity Policy to Combat Racism and Health<br>Disparities in Gastroenterology. Gastroenterology, 2020, 159, 1637-1647.                         | 0.6 | 27        |
| 123 | Two-dimensional gel analysis of glandular keratin intermediate filament phosphorylation.<br>Electrophoresis, 1996, 17, 1671-1676.                                                               | 1.3 | 26        |
| 124 | Hyposmotic Stress Induces Cell Growth Arrest via Proteasome Activation and Cyclin/Cyclin-dependent<br>Kinase Degradation. Journal of Biological Chemistry, 2002, 277, 19295-19303.              | 1.6 | 26        |
| 125 | A mutation of keratin 18 within the coil 1A consensus motif causes widespread keratin aggregation but cell type-restricted lethality in mice. Experimental Cell Research, 2007, 313, 3127-3140. | 1.2 | 26        |
| 126 | PKC412 normalizes mutationâ€related keratin filament disruption and hepatic injury in mice by promoting keratin–myosin binding. Hepatology, 2015, 62, 1858-1869.                                | 3.6 | 26        |

| #   | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Medullary thymic epithelial NF–kB-inducing kinase (NIK)/IKKα pathway shapes autoimmunity and liver and<br>lung homeostasis in mice. Proceedings of the National Academy of Sciences of the United States of<br>America, 2019, 116, 19090-19097. | 3.3 | 25        |
| 128 | Heme oxygenase-1 is induced in peripheral blood mononuclear cells of patients with acute<br>pancreatitis: a potential therapeutic target. American Journal of Physiology - Renal Physiology, 2011,<br>300, G12-G20.                             | 1.6 | 23        |
| 129 | CD73 (ecto-5′-nucleotidase) hepatocyte levels differ across mouse strains and contribute to<br>mallory-denk body formation. Hepatology, 2013, 58, 1790-1800.                                                                                    | 3.6 | 23        |
| 130 | Reg-II Is an Exocrine Pancreas Injury-Response Product That Is Up-Regulated by Keratin Absence or Mutation. Molecular Biology of the Cell, 2007, 18, 4969-4978.                                                                                 | 0.9 | 22        |
| 131 | Mallory–Denk Bodies Are Associated With Outcomes and Histologic Features in Patients With<br>Chronic Hepatitis C. Clinical Gastroenterology and Hepatology, 2011, 9, 902-909.e1.                                                                | 2.4 | 22        |
| 132 | A Conserved Rod Domain Phosphotyrosine That Is Targeted by the Phosphatase PTP1B Promotes Keratin<br>8 Protein Insolubility and Filament Organization*. Journal of Biological Chemistry, 2013, 288,<br>31329-31337.                             | 1.6 | 22        |
| 133 | Acknowledging Joint First Authors of Published Work: The Time Has Come. Gastroenterology, 2012, 143, 879-880.                                                                                                                                   | 0.6 | 21        |
| 134 | A precursorâ€inducible zebrafish model of acute protoporphyria with hepatic protein aggregation and multiorganelle stress. FASEB Journal, 2016, 30, 1798-1810.                                                                                  | 0.2 | 21        |
| 135 | E4BP4 is an insulin-induced stabilizer of nuclear SREBP-1c and promotes SREBP-1c-mediated lipogenesis.<br>Journal of Lipid Research, 2016, 57, 1219-1230.                                                                                       | 2.0 | 21        |
| 136 | "Toxic memory―via chaperone modification is a potential mechanism for rapid mallory-denk body<br>reinduction. Hepatology, 2008, 48, 931-942.                                                                                                    | 3.6 | 20        |
| 137 | Human keratin 8 variants promote mouse acetaminophen hepatotoxicity coupled with câ€jun<br>aminoâ€ŧerminal kinase activation and protein adduct formation. Hepatology, 2015, 62, 876-886.                                                       | 3.6 | 20        |
| 138 | Assays for Posttranslational Modifications of Intermediate Filament Proteins. Methods in Enzymology, 2016, 568, 113-138.                                                                                                                        | 0.4 | 20        |
| 139 | Biochemical and morphological differentiation of the human colonic epithelial cell line SW620 in the presence of dimethylsulfoxide. Journal of Cellular Biochemistry, 1992, 48, 316-323.                                                        | 1.2 | 19        |
| 140 | Nuclear lamina genetic variants, including a truncated LAP2, in twins and siblings with nonalcoholic fatty liver disease. Hepatology, 2018, 67, 1710-1725.                                                                                      | 3.6 | 19        |
| 141 | Oxygen and Conformation Dependent Protein Oxidation and Aggregation by Porphyrins in Hepatocytes and Light-Exposed Cells. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 659-682.e1.                                          | 2.3 | 19        |
| 142 | Actin overexpression parallels severity of pancreatic injury. Experimental Cell Research, 2004, 299, 404-414.                                                                                                                                   | 1.2 | 18        |
| 143 | Prevalence of genetic variants of keratins 8 and 18 in patients with drug-induced liver injury. BMC<br>Medicine, 2015, 13, 196.                                                                                                                 | 2.3 | 17        |
| 144 | The sweet side of vimentin. ELife, 2018, 7, .                                                                                                                                                                                                   | 2.8 | 17        |

| #   | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Genotypeâ€phenotype analysis of <i>LMNA</i> â€related diseases predicts phenotypeâ€selective alterations in<br>lamin phosphorylation. FASEB Journal, 2020, 34, 9051-9073.                                           | 0.2  | 17        |
| 146 | Human Ran Cysteine 112 Oxidation by Pervanadate Regulates Its Binding to Keratins. Journal of<br>Biological Chemistry, 2005, 280, 12162-12167.                                                                      | 1.6  | 16        |
| 147 | Gene expression changes associated with Barrett's esophagus and Barrett's-associated adenocarcinoma cell lines after acid or bile salt exposure. BMC Gastroenterology, 2007, 7, 24.                                 | 0.8  | 16        |
| 148 | High-Throughput Screening for Drugs that Modulate Intermediate Filament Proteins. Methods in Enzymology, 2016, 568, 163-185.                                                                                        | 0.4  | 16        |
| 149 | Bispecific and human disease-related anti-keratin rabbit monoclonal antibodies. Experimental Cell<br>Research, 2006, 312, 411-422.                                                                                  | 1.2  | 15        |
| 150 | Tumor‧elective Altered Glycosylation and Functional Attenuation of CD73 in Human Hepatocellular<br>Carcinoma. Hepatology Communications, 2019, 3, 1400-1414.                                                        | 2.0  | 15        |
| 151 | Characterization of In Vivo Keratin 19 Phosphorylation on Tyrosine-391. PLoS ONE, 2010, 5, e13538.                                                                                                                  | 1.1  | 15        |
| 152 | Method of cell handling affects leakiness of cell surface labeling and detection of intracellular keratins. Cytoskeleton, 1993, 26, 77-87.                                                                          | 4.4  | 14        |
| 153 | Keratin-containing inclusions affect cell morphology and distribution of cytosolic cellular components. Experimental Cell Research, 2005, 304, 471-482.                                                             | 1.2  | 14        |
| 154 | Pharmacologic transglutaminase inhibition attenuates drug-primed liver hypertrophy but not Mallory body formation. FEBS Letters, 2006, 580, 2351-2357.                                                              | 1.3  | 14        |
| 155 | Denaturing temperature selection may underestimate keratin mutation detection by DHPLC. Human Mutation, 2006, 27, 444-452.                                                                                          | 1.1  | 14        |
| 156 | HIF1-alpha Regulates Acinar Cell Function and Response to Injury in Mouse Pancreas.<br>Gastroenterology, 2018, 154, 1630-1634.e3.                                                                                   | 0.6  | 14        |
| 157 | Reciprocal keratin 18 Ser48 O-GlcNAcylation and Ser52 phosphorylation using peptide analysis.<br>Biochemical and Biophysical Research Communications, 2006, 351, 708-712.                                           | 1.0  | 13        |
| 158 | Skin care by keratins. Nature, 2006, 441, 296-297.                                                                                                                                                                  | 13.7 | 13        |
| 159 | Modulation of cytoskeletal dynamics by mammalian nucleoside diphosphate kinase (NDPK) proteins.<br>Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 189-197.                                              | 1.4  | 13        |
| 160 | Not all mice are the same: Standardization of animal research data presentation. Hepatology, 2016, 63, 1752-1754.                                                                                                   | 3.6  | 13        |
| 161 | Absence of keratin 8 or 18 promotes antimitochondrial autoantibody formation in aging male mice.<br>FASEB Journal, 2015, 29, 5081-5089.                                                                             | 0.2  | 12        |
| 162 | Absence of keratins 8 and 18 in rodent epithelial cell lines associates with keratin gene mutation and DNA methylation: Cell line selective effects on cell invasion. Experimental Cell Research, 2015, 335, 12-22. | 1.2  | 12        |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Keratin impact on PKCÎ′/ASMase regulation of hepatocyte lipid raft size: Implication in FasR-associated<br>apoptosis. Journal of Cell Science, 2016, 129, 3262-73.                                                         | 1.2 | 12        |
| 164 | Lamin A/C Maintains Exocrine Pancreas Homeostasis by Regulating Stability of RB and Activity of E2F.<br>Gastroenterology, 2018, 154, 1625-1629.e8.                                                                         | 0.6 | 12        |
| 165 | Pancreatic HIF2α Stabilization Leads to Chronic Pancreatitis and Predisposes to Mucinous Cystic Neoplasm. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 169-185.e2.                                     | 2.3 | 12        |
| 166 | Non-Coding Keratin Variants Associate with Liver Fibrosis Progression in Patients with<br>Hemochromatosis. PLoS ONE, 2012, 7, e32669.                                                                                      | 1.1 | 12        |
| 167 | Enhancing career development of postdoctoral trainees: act locally and beyond. Journal of Physiology, 2019, 597, 2317-2322.                                                                                                | 1.3 | 10        |
| 168 | Here's how we restore productivity and vigor to the biomedical research workforce in the midst of<br>COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117,<br>19612-19614. | 3.3 | 10        |
| 169 | Changing of the Guards: 2011–2016 Gastroenterology Team. Gastroenterology, 2011, 141, 4-7.                                                                                                                                 | 0.6 | 8         |
| 170 | Not All Mice Are the Same: Standardization of Animal Research Data Presentation. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 391-393.                                                                 | 2.3 | 8         |
| 171 | Potential association of LMNA-associated generalized lipodystrophy with juvenile dermatomyositis.<br>Clinical Diabetes and Endocrinology, 2018, 4, 6.                                                                      | 1.3 | 8         |
| 172 | Trends in NIH-supported career development funding: implications for institutions, trainees, and the future research workforce. JCI Insight, 2020, 5, .                                                                    | 2.3 | 8         |
| 173 | A multi-journal partnership to highlight joint first-authors of manuscripts. Gut, 2015, 64, 189-189.                                                                                                                       | 6.1 | 7         |
| 174 | Not All Mice Are the Same: Standardization of Animal Research Data Presentation. Gastroenterology, 2016, 150, 1503-1504.                                                                                                   | 0.6 | 7         |
| 175 | Mouse genetic background contributes to hepatocyte susceptibility to Fas-mediated apoptosis.<br>Molecular Biology of the Cell, 2016, 27, 3005-3012.                                                                        | 0.9 | 7         |
| 176 | Not All Mice Are the Same: Standardization of Animal Research Data Presentation. Gut, 2016, 65, 894-895.                                                                                                                   | 6.1 | 6         |
| 177 | Mentoring: A Necessary But Not Sufficient Ingredient for Enhancing Success. Gastroenterology, 2016,<br>150, 1067-1070.                                                                                                     | 0.6 | 6         |
| 178 | Protein-aggregating ability of different protoporphyrin-IX nanostructures is dependent on their oxidation and protein-binding capacity. Journal of Biological Chemistry, 2021, 297, 100778.                                | 1.6 | 6         |
| 179 | Keratin 7 Is a Constituent of the Keratin Network in Mouse Pancreatic Islets and Is Upregulated in<br>Experimental Diabetes. International Journal of Molecular Sciences, 2021, 22, 7784.                                  | 1.8 | 6         |
| 180 | Keratins provide virus-dependent protection or predisposition to injury in coxsackievirus-induced pancreatitis. Cell Health and Cytoskeleton, 2009, Volume 1, 51-65.                                                       | 0.7 | 5         |
|     |                                                                                                                                                                                                                            |     |           |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Transglutaminase Cross-Links Sp1-Mediated Transcription to Ethanol-Induced Liver Injury.<br>Gastroenterology, 2009, 136, 1502-1505.                                                                    | 0.6 | 5         |
| 182 | Clusterin and Pycr1 alterations associate with strain and model differences in susceptibility to experimental pancreatitis. Biochemical and Biophysical Research Communications, 2017, 482, 1346-1352. | 1.0 | 4         |
| 183 | PP2 protects from keratin mutation–associated liver injury and filament disruption via SRC kinase inhibition in male but not female mice. Hepatology, 2023, 77, 144-158.                               | 3.6 | 4         |
| 184 | Why Send Your Paper to Gastroenterology: Global Outreach and Partnerships With Sister Journals,<br>CGH and CMGH, Among a Menu of Offerings. Gastroenterology, 2015, 148, 673-678.                      | 0.6 | 3         |
| 185 | Geographic prevalence variation and phenotype penetrance in porphyria: insights from a Chinese population database. Blood Advances, 2021, 5, 12-15.                                                    | 2.5 | 3         |
| 186 | G astroenterology 's Editors-in-Chief: Historical and Personal Perspectives of Their Editorships.<br>Gastroenterology, 2013, 145, 16-31.                                                               | 0.6 | 2         |
| 187 | A multi-journal partnership to highlight joint first-authors of manuscripts. Gastrointestinal<br>Endoscopy, 2015, 81, 437-438.                                                                         | 0.5 | 2         |
| 188 | Preface. Methods in Enzymology, 2016, 568, xxiii-xxiv.                                                                                                                                                 | 0.4 | 2         |
| 189 | Acitretin mitigates uroporphyrin-induced bone defects in congenital erythropoietic porphyria models.<br>Scientific Reports, 2021, 11, 9601.                                                            | 1.6 | 2         |
| 190 | Ethanol and Acetaminophen Synergistically Induce Hepatic Aggregation and TCH346-Insensitive Nuclear Translocation of GAPDH. PLoS ONE, 2016, 11, e0160982.                                              | 1.1 | 2         |
| 191 | Our new President—Emmet B. Keeffe, M.D. Gastroenterology, 2004, 126, 1454-1460.                                                                                                                        | 0.6 | 1         |
| 192 | The NIH, Research Institutions and Industry: Working Together on a Shared Goal. Gastroenterology, 2007, 132, 1647-1650.                                                                                | 0.6 | 1         |
| 193 | Hepatocyte-derived cultured cells with unusual cytoplasmic keratin-rich spheroid bodies.<br>Experimental Cell Research, 2011, 317, 2683-2694.                                                          | 1.2 | 1         |
| 194 | Our New President—Anil K. Rustgi, MD. Gastroenterology, 2013, 144, 1129-1135.                                                                                                                          | 0.6 | 1         |
| 195 | Reply. Hepatology, 2014, 60, 767-768.                                                                                                                                                                  | 3.6 | 1         |
| 196 | A Multi-Journal Partnership to Highlight Joint First-Authors of Manuscripts. Gastroenterology, 2015,<br>148, 274-275.                                                                                  | 0.6 | 1         |
| 197 | A Multi-Journal Partnership to Highlight Joint First-Authors of Manuscripts. Journal of Hepatology, 2015, 62, 255-256.                                                                                 | 1.8 | 1         |
| 198 | Gastroenterology 2011–2016: Looking Back andÂForward. Gastroenterology, 2016, 150, 1496-1502.                                                                                                          | 0.6 | 1         |

| #   | Article                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Cell biology to disease and back. Nature Reviews Molecular Cell Biology, 2016, 17, 4-4.                                                             | 16.1 | 1         |
| 200 | Our New Editor—Anil K. Rustgi. Gastroenterology, 2006, 130, 1938-1939.                                                                              | 0.6  | 0         |
| 201 | Two strikes: limited NIH R55 and R56 retooling funds and abolishment of the A2 grant mechanism.<br>FASEB Journal, 2011, 25, 4108-4110.              | 0.2  | 0         |
| 202 | A multiâ€journal partnership to highlight joint firstâ€authors of manuscripts. Hepatology, 2015, 61,<br>416-417.                                    | 3.6  | 0         |
| 203 | Reply. Gastroenterology, 2020, 159, 799.                                                                                                            | 0.6  | 0         |
| 204 | The AGA 2020 Year in Review. Gastroenterology, 2021, 160, 982-984.                                                                                  | 0.6  | 0         |
| 205 | Myeloid Progenitors Protect Against Radiation-Induced Intestinal Injury Blood, 2005, 106, 5225-5225.                                                | 0.6  | 0         |
| 206 | Porphyrin Nanostructures Modulates Its Protein Aggregation Ability via Differential Oxidation and Protein Binding. FASEB Journal, 2019, 33, 784.13. | 0.2  | 0         |