Joel A Schick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6522207/publications.pdf

Version: 2024-02-01

24 papers 8,992 citations

567281 15 h-index 610901 24 g-index

24 all docs

24 docs citations

times ranked

24

11318 citing authors

#	Article	IF	CITATIONS
1	MS4A15 drives ferroptosis resistance through calcium-restricted lipid remodeling. Cell Death and Differentiation, 2022, 29, 670-686.	11.2	35
2	Molecular Signature of Astrocytes for Gene Delivery by the Synthetic Adenoâ€Associated Viral Vector rAAV9P1. Advanced Science, 2022, 9, e2104979.	11.2	7
3	A resource of targeted mutant mouse lines for 5,061 genes. Nature Genetics, 2021, 53, 416-419.	21.4	60
4	Cannabidiol converts NF-κB into a tumor suppressor in glioblastoma with defined antioxidative properties. Neuro-Oncology, 2021, 23, 1898-1910.	1.2	24
5	Evolutionary and functional analyses demonstrate conserved ferroptosis protection by Arabidopsis GPXs in mammalian cells. FASEB Journal, 2021, 35, e21550.	0.5	5
6	Genome-Wide Analysis of MDHAR Gene Family in Four Cotton Species Provides Insights into Fiber Development via Regulating AsA Redox Homeostasis. Plants, 2021, 10, 227.	3.5	9
7	GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Central Science, 2020, 6, 41-53.	11.3	551
8	Nonsenseâ€mediated decay factor SMG7 sensitizes cells to TNFαâ€induced apoptosis via CYLD tumor suppressor and the noncoding oncogene <i>Pvt1</i> . Molecular Oncology, 2020, 14, 2420-2435.	4.6	8
9	Human and mouse essentiality screens as a resource for disease gene discovery. Nature Communications, 2020, 11, 655.	12.8	64
10	A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nature Communications, 2017, 8, 886.	12.8	116
11	ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nature Chemical Biology, 2017, 13, 91-98.	8.0	2,069
12	ENCoRE: an efficient software for CRISPR screens identifies new players in extrinsic apoptosis. BMC Genomics, 2017, 18, 905.	2.8	15
13	CRISPR-Cas9 enables conditional mutagenesis of challenging loci. Scientific Reports, 2016, 6, 32326.	3.3	10
14	Limitations of <i>In Vivo</i> Reprogramming to Dopaminergic Neurons via a Tricistronic Strategy. Human Gene Therapy Methods, 2015, 26, 107-122.	2.1	2
15	Beyond knockouts: the International Knockout Mouse Consortium delivers modular and evolving tools for investigating mammalian genes. Mammalian Genome, 2015, 26, 456-466.	2.2	27
16	Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature Cell Biology, 2014, 16, 1180-1191.	10.3	2,241
17	Glutathione and thioredoxin dependent systems in neurodegenerative disease: What can be learned from reverse genetics in mice. Neurochemistry International, 2013, 62, 738-749.	3.8	30
18	Roquin Paralogs 1 and 2 Redundantly Repress the Icos and Ox40 Costimulator mRNAs and Control Follicular Helper T Cell Differentiation. Immunity, 2013, 38, 655-668.	14.3	178

#	Article	IF	CITATION
19	Direct Cloning of Isogenic Murine DNA in Yeast and Relevance of Isogenicity for Targeting in Embryonic Stem Cells. PLoS ONE, 2013, 8, e74207.	2.5	2
20	The mammalian gene function resource: the international knockout mouse consortium. Mammalian Genome, 2012, 23, 580-586.	2.2	292
21	Evidence for Cardiomyocyte Renewal in Humans. Science, 2009, 324, 98-102.	12.6	2,679
22	High-Throughput Identification of Genes Promoting Neuron Formation and Lineage Choice in Mouse Embryonic Stem Cells. Stem Cells, 2007, 25, 1539-1545.	3.2	13
23	Functional analysis of secreted and transmembrane proteins critical to mouse development. Nature Genetics, 2001, 28, 241-249.	21.4	379
24	glypican-3 Controls Cellular Responses to Bmp4 in Limb Patterning and Skeletal Development. Developmental Biology, 2000, 225, 179-187.	2.0	176