Danilo De Gregorio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6521995/publications.pdf Version: 2024-02-01

		304368	433756
32	1,854	22	31
papers	citations	h-index	g-index
33	33	33	2346
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Repeated lysergic acid diethylamide (LSD) reverses stress-induced anxiety-like behavior, cortical synaptogenesis deficits and serotonergic neurotransmission decline. Neuropsychopharmacology, 2022, 47, 1188-1198.	2.8	36
2	Modulation of DNA methylation and protein expression in the prefrontal cortex by repeated administration of D-lysergic acid diethylamide (LSD): Impact on neurotropic, neurotrophic, and neuroplasticity signaling. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2022, 119, 110594.	2.5	14
3	Hallucinogens in Mental Health: Preclinical and Clinical Studies on LSD, Psilocybin, MDMA, and Ketamine. Journal of Neuroscience, 2021, 41, 891-900.	1.7	99
4	Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanisms. Pharmacological Reviews, 2021, 73, 202-277.	7.1	110
5	Antidepressant actions of ketamine engage cell-specific translation via elF4E. Nature, 2021, 590, 315-319.	13.7	68
6	Lysergic acid diethylamide (LSD) promotes social behavior through mTORC1 in the excitatory neurotransmission. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	55
7	Lysergic acid diethylamide differentially modulates the reticular thalamus, mediodorsal thalamus, and infralimbic prefrontal cortex: An in vivo electrophysiology study in male mice. Journal of Psychopharmacology, 2021, 35, 469-482.	2.0	24
8	Editorial: The Endocannabinoid System: Filling the Translational Gap Between Neuroscience and Psychiatry. Frontiers in Psychiatry, 2021, 12, 771442.	1.3	0
9	Evaluating the Potential Use of Serotonergic Psychedelics in Autism Spectrum Disorder. Frontiers in Pharmacology, 2021, 12, 749068.	1.6	16
10	Characterization of the sensory, affective, cognitive, biochemical, and neuronal alterations in a modified chronic constriction injury model of neuropathic pain in mice. Journal of Neuroscience Research, 2020, 98, 338-352.	1.3	30
11	A Key Role for Prefrontocortical Small Conductance Calcium-Activated Potassium Channels in Stress Adaptation and Rapid Antidepressant Response. Cerebral Cortex, 2020, 30, 1559-1572.	1.6	7
12	Effects of Chronic Exposure to Low-Dose delta-9-Tetrahydrocannabinol in Adolescence and Adulthood on Serotonin/Norepinephrine Neurotransmission and Emotional Behavior. International Journal of Neuropsychopharmacology, 2020, 23, 751-761.	1.0	22
13	Nociceptive responses in melatonin MT ₂ receptor knockout mice compared to MT ₁ and double MT ₁ /MT ₂ receptor knockout mice. Journal of Pineal Research, 2020, 69, e12671.	3.4	16
14	Behavioral, Biochemical and Electrophysiological Changes in Spared Nerve Injury Model of Neuropathic Pain. International Journal of Molecular Sciences, 2020, 21, 3396.	1.8	60
15	Dysfunction of serotonergic activity and emotional responses across the lightâ€dark cycle in mice lackingÂmelatonin MT ₂ receptors. Journal of Pineal Research, 2020, 69, e12653.	3.4	17
16	Ketones and pain: unexplored role of hydroxyl carboxylic acid receptor type 2 in the pathophysiology of neuropathic pain. FASEB Journal, 2019, 33, 1062-1073.	0.2	42
17	Melatonin MT1 and MT2 Receptors Exhibit Distinct Effects in the Modulation of Body Temperature across the Light/Dark Cycle. International Journal of Molecular Sciences, 2019, 20, 2452.	1.8	20
18	Melatonin MT1 receptor as a novel target in neuropsychopharmacology: MT1 ligands, pathophysiological and therapeutic implications, and perspectives. Pharmacological Research, 2019, 144, 343-356.	3.1	38

DANILO DE GREGORIO

#	Article	IF	CITATIONS
19	Cannabidiol modulates serotonergic transmission and reverses both allodynia and anxiety-like behavior in a model of neuropathic pain. Pain, 2019, 160, 136-150.	2.0	239
20	Role of palmitoylethanolamide (PEA) in depression: Translational evidence. Journal of Affective Disorders, 2019, 255, 195-200.	2.0	22
21	Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain, Behavior, and Immunity, 2018, 67, 230-245.	2.0	246
22	Targeting Melatonin MT2 Receptors: A Novel Pharmacological Avenue for Inflammatory and Neuropathic Pain. Current Medicinal Chemistry, 2018, 25, 3866-3882.	1.2	44
23	d-Lysergic acid diethylamide, psilocybin, and other classic hallucinogens: Mechanism of action and potential therapeutic applications in mood disorders. Progress in Brain Research, 2018, 242, 69-96.	0.9	61
24	Translational control of depression-like behavior via phosphorylation of eukaryotic translation initiation factor 4E. Nature Communications, 2018, 9, 2459.	5.8	65
25	Palmitoylethanolamide Reduces Neuropsychiatric Behaviors by Restoring Cortical Electrophysiological Activity in a Mouse Model of Mild Traumatic Brain Injury. Frontiers in Pharmacology, 2017, 08, 95.	1.6	58
26	d-Lysergic Acid Diethylamide (LSD) as a Model of Psychosis: Mechanism of Action and Pharmacology. International Journal of Molecular Sciences, 2016, 17, 1953.	1.8	76
27	The hallucinogen d -lysergic diethylamide (LSD) decreases dopamine firing activity through 5-HT 1A , D 2 and TAAR 1 receptors. Pharmacological Research, 2016, 113, 81-91.	3.1	76
28	Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor <scp>CB</scp> ₁ R signaling and anxietyâ€ike behavior. Journal of Neurochemistry, 2015, 135, 799-813.	2.1	74
29	MMPIP, an mGluR7-selective negative allosteric modulator, alleviates pain and normalizes affective and cognitive behavior in neuropathic mice. Pain, 2015, 156, 1060-1073.	2.0	56
30	Effects of metabolites of the analgesic agent dipyrone (metamizol) on rostral ventromedial medulla cell activity in mice. European Journal of Pharmacology, 2015, 748, 115-122.	1.7	24
31	Palmitoylethanolamide reduces pain-related behaviors and restores glutamatergic synapses homeostasis in the medial prefrontal cortex of neuropathic mice. Molecular Brain, 2015, 8, 47.	1.3	106
32	Dorsal striatum metabotropic glutamate receptor 8 affects nocifensive responses and rostral ventromedial medulla cell activity in neuropathic pain conditions. Journal of Neurophysiology, 2014, 111, 2196-2209.	0.9	33