Diego O Croci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6521994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nature Immunology, 2007, 8, 825-834.	7.0	574
2	Glycosylation-Dependent Lectin-Receptor Interactions Preserve Angiogenesis in Anti-VEGF Refractory Tumors. Cell, 2014, 156, 744-758.	13.5	423
3	Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nature Immunology, 2009, 10, 981-991.	7.0	403
4	Galectin-1 Deactivates Classically Activated Microglia and Protects from Inflammation-Induced Neurodegeneration. Immunity, 2012, 37, 249-263.	6.6	313
5	Regulatory Circuits Mediated by Lectin-Glycan Interactions in Autoimmunity and Cancer. Immunity, 2012, 36, 322-335.	6.6	307
6	Targeting Galectin-1 Overcomes Breast Cancer-Associated Immunosuppression and Prevents Metastatic Disease. Cancer Research, 2013, 73, 1107-1117.	0.4	216
7	Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment. Cancer Immunology, Immunotherapy, 2007, 56, 1687-1700.	2.0	188
8	Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi's sarcoma. Journal of Experimental Medicine, 2012, 209, 1985-2000.	4.2	168
9	A Unique Galectin Signature in Human Prostate Cancer Progression Suggests Galectin-1 as a Key Target for Treatment of Advanced Disease. Cancer Research, 2013, 73, 86-96.	0.4	142
10	Modulation of endothelial cell migration and angiogenesis: a novel function for the "tandemâ€repeat― lectin galectinâ€8. FASEB Journal, 2011, 25, 242-254.	0.2	123
11	Fucans, but Not Fucomannoglucuronans, Determine the Biological Activities of Sulfated Polysaccharides from Laminaria saccharina Brown Seaweed. PLoS ONE, 2011, 6, e17283.	1.1	104
12	Translating the †Sugar Code' into Immune and Vascular Signaling Programs. Trends in Biochemical Sciences, 2017, 42, 255-273.	3.7	95
13	Galectin-1 as a potential therapeutic target in autoimmune disorders and cancer. Expert Opinion on Biological Therapy, 2008, 8, 45-57.	1.4	79
14	The immunoregulatory glycanâ€binding protein galectinâ€1 triggers human platelet activation. FASEB Journal, 2008, 22, 1113-1123.	0.2	72
15	Dissecting the pathophysiologic role of endogenous lectins: Glycan-binding proteins with cytokine-like activity?. Cytokine and Growth Factor Reviews, 2007, 18, 57-71.	3.2	71
16	Histone deacetylase inhibitors impair NK cell viability and effector functions through inhibition of activation and receptor expression. Journal of Leukocyte Biology, 2011, 91, 321-331.	1.5	65
17	Galectin-1 fosters an immunosuppressive microenvironment in colorectal cancer by reprogramming CD8 ⁺ regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	58
18	Regulated expression of galectin-3, a multifunctional glycan-binding protein, in haematopoietic and non-haematopoietic tissues. Histology and Histopathology, 2011, 26, 247-65.	0.5	58

DIEGO O CROCI

#	Article	IF	CITATIONS
19	Glioblastomas exploit truncated O <i>-</i> linked glycans for local and distant immune modulation via the macrophage galactose-type lectin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3693-3703.	3.3	57
20	Galectins: Multitask signaling molecules linking fibroblast, endothelial and immune cell programs in the tumor microenvironment. Cellular Immunology, 2018, 333, 34-45.	1.4	52
21	Multiple Functional Targets of the Immunoregulatory Activity of Galectin-1. Methods in Enzymology, 2010, 480, 199-244.	0.4	51
22	Regulatory role of glycans in the control of hypoxia-driven angiogenesis and sensitivity to anti-angiogenic treatment. Glycobiology, 2014, 24, 1283-1290.	1.3	51
23	Novel roles of galectinâ€1 in hepatocellular carcinoma cell adhesion, polarization, and <i>in vivo</i> tumor growth. Hepatology, 2011, 53, 2097-2106.	3.6	49
24	Apoptosis resistance in HIV-1 persistently-infected cells is independent of active viral replication and involves modulation of the apoptotic mitochondrial pathway. Retrovirology, 2008, 5, 19.	0.9	48
25	Nuclear factor (NF)-κB controls expression of the immunoregulatory glycan-binding protein galectin-1. Molecular Immunology, 2011, 48, 1940-1949.	1.0	45
26	Binding of galectinâ€1 to α _{Ilb} β ₃ integrin triggers "outsideâ€in―signals, stimulates platelet activation, and controls primary hemostasis. FASEB Journal, 2012, 26, 2788-2798.	⁶ 0.2	41
27	Silencing survivin gene expression promotes apoptosis of human breast cancer cells through a caspaseâ€independent pathway. Journal of Cellular Biochemistry, 2008, 105, 381-390.	1.2	39
28	Galectins in hematological malignancies. Current Opinion in Hematology, 2013, 20, 327-335.	1.2	38
29	Glycosylation-dependent galectin–receptor interactions promote <i>Chlamydia trachomatis</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6000-E6009.	3.3	38
30	Glyco-nano-oncology: Novel therapeutic opportunities by combining small and sweet. Pharmacological Research, 2016, 109, 45-54.	3.1	37
31	Suppression of age-related salivary gland autoimmunity by glycosylation-dependent galectin-1-driven immune inhibitory circuits. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6630-6639.	3.3	37
32	Hypoxia Supports Differentiation of Terminally Exhausted CD8 T Cells. Frontiers in Immunology, 2021, 12, 660944.	2.2	37
33	Dissecting the signal transduction pathways triggered by galectin–glycan interactions in physiological and pathological settings. IUBMB Life, 2010, 62, 1-13.	1.5	29
34	Galectin-1 expression imprints a neurovascular phenotype in proliferative retinopathies and delineates responses to anti-VEGF. Oncotarget, 2017, 8, 32505-32522.	0.8	27
35	Overcoming the Hurdles of Tumor Immunity by Targeting Regulatory Pathways in Innate and Adaptive Immune Cells. Current Pharmaceutical Design, 2010, 16, 255-267.	0.9	25
36	Endogenous lectins shape the function of dendritic cells and tailor adaptive immunity: Mechanisms and biomedical applications. International Immunopharmacology, 2011, 11, 833-841.	1.7	25

DIEGO O CROCI

#	Article	IF	CITATIONS
37	Targeting galectin-1-induced angiogenesis mitigates the severity of endometriosis. Journal of Pathology, 2014, 234, 329-337.	2.1	25
38	Characterization of a neutralizing anti-human galectin-1 monoclonal antibody with angioregulatory and immunomodulatory activities. Angiogenesis, 2021, 24, 1-5.	3.7	24
39	The Tn antigen promotes lung tumor growth by fostering immunosuppression and angiogenesis via interaction with Macrophage Galactose-type lectin 2 (MGL2). Cancer Letters, 2021, 518, 72-81.	3.2	24
40	Integrating structure and function of tandem-repeat galectins. Frontiers in Bioscience - Scholar, 2012, S4, 864-887.	0.8	20
41	Linking the Structure and Thermal Stability of β-Galactoside-Binding Protein Galectin-1 to Ligand Binding and Dimerization Equilibria. Biochemistry, 2010, 49, 7652-7658.	1.2	18
42	Cell-type specific regulation of galectin-3 expression by glucocorticoids in lung Clara cells and macrophages. Histology and Histopathology, 2011, 26, 747-59.	0.5	16
43	Linking tumor hypoxia with VEGFR2 signaling and compensatory angiogenesis. Oncolmmunology, 2014, 3, e29380.	2.1	15
44	An adipose tissue galectin controls endothelial cell function via preferential recognition of 3â€fucosylated glycans. FASEB Journal, 2020, 34, 735-753.	0.2	15
45	The galectinâ€lâ€glycan axis controls sperm fertilizing capacity by regulating sperm motility and membrane hyperpolarization. FASEB Journal, 2015, 29, 4189-4200.	0.2	13
46	Control of intestinal inflammation by glycosylation-dependent lectin-driven immunoregulatory circuits. Science Advances, 2021, 7, .	4.7	12
47	Galectins as potential therapeutic targets in STIs in the female genital tract. Nature Reviews Urology, 2022, 19, 240-252.	1.9	12
48	Galectins as Emerging Glyco-Checkpoints and Therapeutic Targets in Glioblastoma. International Journal of Molecular Sciences, 2022, 23, 316.	1.8	11
49	Immune-Mediated and Hypoxia-Regulated Programs: Accomplices in Resistance to Anti-angiogenic Therapies. Handbook of Experimental Pharmacology, 2017, 249, 31-61.	0.9	10
50	Tumor Necrosis Factor Receptor-1 (p55) Deficiency Attenuates Tumor Growth and Intratumoral Angiogenesis and Stimulates CD8+ T Cell Function in Melanoma. Cells, 2020, 9, 2469.	1.8	7
51	Galectin-1 impacts on glucose homeostasis by modulating pancreatic insulin release. Glycobiology, 2021, 31, 908-915.	1.3	6
52	The aggressiveness of murine lymphomas selected in vivo by growth rate correlates with galectin-1 expression and response to cyclophosphamide. Cancer Immunology, Immunotherapy, 2012, 61, 469-480.	2.0	5
53	"Time sweet time": circadian characterization of galectin-1 null mice. Journal of Circadian Rhythms, 2014, 8, 4.	2.9	5
54	Study of Galectins in Tumor Immunity: Strategies and Methods. Methods in Molecular Biology, 2015, 1207, 249-268.	0.4	5

DIEGO O CROCI

#	Article	IF	CITATIONS
55	Regulation of Galectins by Hypoxia and Their Relevance in Angiogenesis: Strategies and Methods. Methods in Molecular Biology, 2015, 1207, 293-304.	0.4	3
56	Expression and function of cathelicidin hCAP18/LL-37 in chronic lymphocytic leukemia. Haematologica, 2020, 105, e465-469.	1.7	3
57	Untangling Galectin-Mediated Circuits that Control Hypoxia-Driven Angiogenesis. Methods in Molecular Biology, 2022, 2442, 635-653.	0.4	1
58	Abstract 3547: Disruption of Galectin1-glycan interaction impairs tumor growth and metastasis in breast cancer by disarming the immunosuppressive capacity of regulatory T cells. , 2012, , .		0