Peter Michael Brophy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/652188/publications.pdf Version: 2024-02-01

		394286	414303
32	1,197	19	32
papers	citations	h-index	g-index
32	32	32	1245
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	<i>Fasciola hepatica</i> Cathepsin L Zymogens: Immuno-Proteomic Evidence for Highly Immunogenic Zymogen-Specific Conformational Epitopes to Support Diagnostics Development. Journal of Proteome Research, 2022, 21, 1997-2010.	1.8	4
2	In vitro screening as an anthelmintic discovery pipeline for Calicophoron daubneyi: nutritive media and rumen environment-based approaches. Parasitology Research, 2021, 120, 1351-1362.	0.6	1
3	Modulation of Rumen Microbes Through Extracellular Vesicle Released by the Rumen Fluke Calicophoron daubneyi. Frontiers in Cellular and Infection Microbiology, 2021, 11, 661830.	1.8	5
4	Evidence of Immune Modulators in the Secretome of the Equine Tapeworm Anoplocephala perfoliata. Pathogens, 2021, 10, 912.	1.2	8
5	Evidence of sequestration of triclabendazole and associated metabolites by extracellular vesicles of Fasciola hepatica. Scientific Reports, 2020, 10, 13445.	1.6	9
6	X-ray structure of Fasciola hepatica Sigma class glutathione transferase 1 reveals a disulfide bond to support stability in gastro-intestinal environment. Scientific Reports, 2019, 9, 902.	1.6	2
7	The importance of extracellular vesicle purification for downstream analysis: A comparison of differential centrifugation and size exclusion chromatography for helminth pathogens. PLoS Neglected Tropical Diseases, 2019, 13, e0007191.	1.3	64
8	Purification of native Sigma class glutathione transferase from Fasciola hepatica. Molecular and Biochemical Parasitology, 2018, 222, 45-50.	0.5	5
9	Inducible glutathione S-transferase (IrGST1) from the tick Ixodes ricinus is a haem-binding protein. Insect Biochemistry and Molecular Biology, 2018, 95, 44-54.	1.2	18
10	Polyomic tools for an emerging livestock parasite, the rumen fluke Calicophoron daubneyi; identifying shifts in rumen functionality. Parasites and Vectors, 2018, 11, 617.	1.0	10
11	Rumen fluke (<i>Calicophoron daubneyi</i>) on Welsh farms: prevalence, risk factors and observations on co-infection with <i>Fasciola hepatica</i> . Parasitology, 2017, 144, 237-247.	0.7	47
12	The prevalence and development of digenean parasites within their intermediate snail host, Galba truncatula , in a geographic area where the presence of Calicophoron daubneyi has recently been confirmed. Veterinary Parasitology, 2017, 240, 68-74.	0.7	21
13	Calmodulin disruption impacts growth and motility in juvenile liver fluke. Parasites and Vectors, 2016, 9, 46.	1.0	21
14	Confirmation of Galba truncatula as an intermediate host snail for Calicophoron daubneyi in Great Britain, with evidence of alternative snail species hosting Fasciola hepatica. Parasites and Vectors, 2015, 8, 656.	1.0	42
15	In vitro biomarker discovery in the parasitic flatworm Fasciola hepatica for monitoring chemotherapeutic treatment. EuPA Open Proteomics, 2014, 3, 85-99.	2.5	18
16	Early hepatic and peritoneal changes and immune response in goats vaccinated with a recombinant glutathione transferase sigma class and challenged with Fasciola hepatica. Research in Veterinary Science, 2013, 94, 602-609.	0.9	27
17	The Sigma Class Glutathione Transferase from the Liver Fluke Fasciola hepatica. PLoS Neglected Tropical Diseases, 2012, 6, e1666.	1.3	60
18	Proteomics and <i>in Silico</i> Approaches To Extend Understanding of the Glutathione Transferase Superfamily of the Tropical Liver Fluke <i>Fasciola gigantica</i> . Journal of Proteome Research, 2012, 11, 5876-5889.	1.8	34

#	Article	IF	CITATIONS
19	Anthelmintic metabolism in parasitic helminths: proteomic insights. Parasitology, 2012, 139, 1205-1217.	0.7	23
20	Towards Delineating Functions within the Fasciola Secreted Cathepsin L Protease Family by Integrating In Vivo Based Sub-Proteomics and Phylogenetics. PLoS Neglected Tropical Diseases, 2011, 5, e937.	1.3	33
21	Molecular Cloning, Biochemical Characterization, and Partial Protective Immunity of the Heme-Binding Glutathione <i>S</i> -Transferases from the Human Hookworm <i>Necator americanus</i> . Infection and Immunity, 2010, 78, 1552-1563.	1.0	89
22	Major Secretory Antigens of the Helminth <i>Fasciola hepatica</i> Activate a Suppressive Dendritic Cell Phenotype That Attenuates Th17 Cells but Fails To Activate Th2 Immune Responses. Infection and Immunity, 2010, 78, 793-801.	1.0	119
23	Heme Transport and Detoxification in Nematodes: Subproteomics Evidence of Differential Role of Glutathione Transferases. Journal of Proteome Research, 2008, 7, 4557-4565.	1.8	42
24	The Aedes aegypti glutathione transferase family. Insect Biochemistry and Molecular Biology, 2007, 37, 1026-1035.	1.2	106
25	Binding of Hematin by a New Class of Clutathione Transferase from the Blood-Feeding Parasitic Nematode Haemonchus contortus. Infection and Immunity, 2004, 72, 2780-2790.	1.0	51
26	Evidence of glutathione transferase complexing and signaling in the model nematodeCaenorhabditis elegans using a pull-down proteomic assay. Proteomics, 2004, 4, 1989-1995.	1.3	9
27	The glutathione S-transferase from Plasmodium falciparum. Molecular and Biochemical Parasitology, 2002, 124, 85-90.	0.5	56
28	Inhibition of glutathione S-transferases (GSTs) from parasitic nematodes by extracts from traditional Nigerian medicinal plants. Phytotherapy Research, 2000, 14, 630-634.	2.8	56
29	A new diagnostic tool for neurocysticercosis is a member of a cestode specific hydrophobic ligand binding protein family 1. FEBS Letters, 2000, 487, 181-184.	1.3	30
30	Structural and functional analysis of a glutathione S-transferase from Ascaris suum. Biochemical Journal, 1997, 324, 659-666.	1.7	44
31	Detoxification reactions of Fasciola hepatica cytosolic glutathione transferases. Molecular and Biochemical Parasitology, 1990, 39, 155-161.	0.5	47
32	Glutathione transferases in the tapeworm <i>Moniezia expansa</i> . Biochemical Journal, 1989, 262, 939-946.	1.7	96