Stefan Olin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6521213/publications.pdf

Version: 2024-02-01

279778 302107 3,572 39 23 39 h-index citations g-index papers 5100 41 41 41 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Agricultural breadbaskets shift poleward given adaptive farmer behavior under climate change. Global Change Biology, 2022, 28, 167-181.	9.5	23
2	Modeling symbiotic biological nitrogen fixation in grain legumes globally with LPJ-GUESS (v4.0,) Tj ETQq0 0 0 rgBT	Overlock	: 10 Tf 50 70
3	Assessing the impacts of agricultural managements on soil carbon stocks, nitrogen loss, and crop production– a modelling study in eastern Africa. Biogeosciences, 2022, 19, 2145-2169.	3.3	2
4	A physiologyâ€based Earth observation model indicates stagnation in the global gross primary production during recent decades. Global Change Biology, 2021, 27, 836-854.	9.5	25
5	Global irrigation contribution to wheat and maize yield. Nature Communications, 2021, 12, 1235.	12.8	61
6	Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios. Environmental Research Letters, 2021, 16, 034040.	5.2	53
7	Strong regional influence of climatic forcing datasets on global crop model ensembles. Agricultural and Forest Meteorology, 2021, 300, 108313.	4.8	17
8	Large potential for crop production adaptation depends on available future varieties. Global Change Biology, 2021, 27, 3870-3882.	9.5	62
9	Nitrogen restricts future sub-arctic treeline advance in an individual-based dynamic vegetation model. Biogeosciences, 2021, 18, 6329-6347.	3.3	6
10	A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586, 248-256.	27.8	814
11	The GGCMI Phase 2 experiment: global gridded crop model simulations under uniform changes in CO ₂ , temperature, water, and nitrogen levels (protocol) Tj ETQq1 1 0.3	7 8.4 314 rg	ţ₿₿ (Overl <mark>oc</mark>
12	Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nature Ecology and Evolution, 2020, 4, 202-209.	7.8	93
13	The GGCMI PhaseÂ2 emulators: global gridded crop model responses to changes in CO ₂ , temperature, water, and nitrogen (version 1.0). Geoscientific Model Development, 2020, 13, 3995-4018.	3.6	19
14	Parameterization-induced uncertainties and impacts of crop management harmonization in a global gridded crop model ensemble. PLoS ONE, 2019, 14, e0221862.	2.5	42
15	The Global Gridded Crop Model Intercomparison phase 1 simulation dataset. Scientific Data, 2019, 6, 50.	5. 3	57
16	Global Response Patterns of Major Rainfed Crops to Adaptation by Maintaining Current Growing Periods and Irrigation. Earth's Future, 2019, 7, 1464-1480.	6.3	38
17	Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Global Change Biology, 2019, 25, 640-659.	9.5	214
18	Large uncertainty in carbon uptake potential of landâ€based climateâ€change mitigation efforts. Global Change Biology, 2018, 24, 3025-3038.	9.5	56

#	Article	IF	CITATIONS
19	Drivers of dissolved organic carbon export in a subarctic catchment: Importance of microbial decomposition, sorption-desorption, peatland and lateral flow. Science of the Total Environment, 2018, 622-623, 260-274.	8.0	20
20	The Global N2O Model Intercomparison Project. Bulletin of the American Meteorological Society, 2018, 99, 1231-1251.	3.3	123
21	Implications of accounting for management intensity on carbon and nitrogen balances of European grasslands. PLoS ONE, 2018, 13, e0201058.	2.5	9
22	Food supply and bioenergy production within the global cropland planetary boundary. PLoS ONE, 2018, 13, e0194695.	2.5	38
23	Assessing the impact of changes in land-use intensity and climate on simulated trade-offs between crop yield and nitrogen leaching. Agriculture, Ecosystems and Environment, 2017, 239, 385-398.	5.3	13
24	Understanding the weather signal in national cropâ€yield variability. Earth's Future, 2017, 5, 605-616.	6.3	85
25	Trends and uncertainties in budburst projections of Norway spruce in Northern Europe. Ecology and Evolution, 2017, 7, 9954-9969.	1.9	9
26	Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators. Biogeosciences, 2017, 14, 4829-4850.	3.3	33
27	Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geoscientific Model Development, 2017, 10, 1403-1422.	3.6	213
28	Future supply and demand of net primary productionÂinÂtheÂSahel. Earth System Dynamics, 2017, 8, 1191-1221.	7.1	3
29	Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance. Earth System Dynamics, 2017, 8, 773-799.	7.1	3
30	Regional disparities in the beneficial effects of rising CO2 concentrations on crop waterÂproductivity. Nature Climate Change, 2016, 6, 786-790.	18.8	190
31	Accounting for interannual variability in agricultural intensification: The potential of crop selection in Sub-Saharan Africa. Agricultural Systems, 2016, 148, 159-168.	6.1	10
32	Future vegetationâ€"climate interactions in Eastern Siberia: an assessment of the competing effects of CO _{2<lsub> and secondary organic aerosols. Atmospheric Chemistry and Physics, 2016, 16, 5243-5262.</lsub>}	4.9	17
33	Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework. Earth System Dynamics, 2016, 7, 893-915.	7.1	33
34	Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management. Environmental Research Letters, 2015, 10, 124008.	5.2	103
35	Investigating the influence of two different flow routing algorithms on soil–water–vegetation interactions using the dynamic ecosystem model LPJâ€GUESS. Ecohydrology, 2015, 8, 570-583.	2.4	16
36	Modelling the response of yields and tissue C: N to changes in atmospheric CO& It; sub& gt; 2& lt; /sub& gt; and N management in the main wheat regions of western Europe. Biogeosciences, 2015, 12, 2489-2515.	3.3	47

STEFAN OLIN

#	Article	IF	CITATIONS
37	Soil carbon management in large-scale Earth system modelling: implications for crop yields and nitrogen leaching. Earth System Dynamics, 2015, 6, 745-768.	7.1	40
38	Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3239-3244.	7.1	795
39	Implications of accounting for land use in simulations of ecosystem carbon cycling in Africa. Earth System Dynamics, 2013, 4, 385-407.	7.1	118