Viktorie Vlachova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6521110/publications.pdf

Version: 2024-02-01

201385 214527 2,369 68 27 47 citations h-index g-index papers 69 69 69 2267 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Functional Role of C-Terminal Cytoplasmic Tail of Rat Vanilloid Receptor 1. Journal of Neuroscience, 2003, 23, 1340-1350.	1.7	181
2	The effect of external pH changes on responses to excitatory amino acids in mouse hippocampal neurones Journal of Physiology, 1990, 430, 497-517.	1.3	151
3	Inflammatory Mediators at Acidic pH Activate Capsaicin Receptors in Cultured Sensory Neurons From Newborn Rats. Journal of Neurophysiology, 1998, 79, 670-676.	0.9	103
4	Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling. EMBO Journal, 2012, 31, 3795-3808.	3.5	103
5	Reducing and Oxidizing Agents Sensitize Heat-Activated Vanilloid Receptor (TRPV1) Current. Molecular Pharmacology, 2006, 70, 383-394.	1.0	99
6	Copper Modulation of NMDA Responses in Mouse and Rat Cultured Hippocampal Neurons. European Journal of Neuroscience, 1996, 8, 2257-2264.	1.2	93
7	Temperature coefficient of membrane currents induced by noxious heat in sensory neurones in the rat. Journal of Physiology, 1999, 517, 181-192.	1.3	89
8	Improved superfusion technique for rapid cooling or heating of cultured cells under patch-clamp conditions. Journal of Neuroscience Methods, 2006, 151, 178-185.	1.3	79
9	A "Cute" Desensitization of TRPV1. Current Pharmaceutical Biotechnology, 2011, 12, 122-129.	0.9	76
10	Structural mechanism of heat-induced opening of a temperature-sensitive TRP channel. Nature Structural and Molecular Biology, 2021, 28, 564-572.	3.6	76
11	A technique for fast application of heated solutions of different composition to cultured neurones. Journal of Neuroscience Methods, 1998, 82, 195-201.	1.3	72
12	Conserved Residues within the Putative S4–S5 Region Serve Distinct Functions among Thermosensitive Vanilloid Transient Receptor Potential (TRPV) Channels. Journal of Biological Chemistry, 2010, 285, 41455-41462.	1.6	68
13	Contribution of the Putative Inner-Pore Region to the Gating of the Transient Receptor Potential Vanilloid Subtype 1 Channel (TRPV1). Journal of Neuroscience, 2007, 27, 7578-7585.	1.7	61
14	Functional changes in the vanilloid receptor subtype 1 channel during and after acute desensitization. Neuroscience, 2007, 149, 144-154.	1,1	60
15	Gadolinium activates and sensitizes the vanilloid receptor TRPV1 through the external protonation sites. Molecular and Cellular Neurosciences, 2005, 30, 207-217.	1.0	56
16	Ethanol inhibits cold-menthol receptor TRPM8 by modulating its interaction with membrane phosphatidylinositol 4,5-bisphosphate. Journal of Neurochemistry, 2007, 100, 211-224.	2.1	55
17	The action of excitatory amino acids on chick spinal cord neurones in culture Journal of Physiology, 1987, 386, 425-438.	1.3	52
18	Molecular Basis of TRPA1 Regulation in Nociceptive Neurons. A Review. Physiological Research, 2017, 66, 425-439.	0.4	52

#	Article	IF	CITATIONS
19	Odontoblast TRPC5 channels signal cold pain in teeth. Science Advances, 2021, 7, .	4.7	42
20	C-terminal Acidic Cluster Is Involved in Ca2+-induced Regulation of Human Transient Receptor Potential Ankyrin 1 Channel. Journal of Biological Chemistry, 2012, 287, 18067-18077.	1.6	39
21	Properties of NMDA receptors in rat spinal cord motoneurons. European Journal of Neuroscience, 1999, 11, 827-836.	1.2	37
22	Reducing agent dithiothreitol facilitates activity of the capsaicin receptor VR-1. Neuroscience, 2002, 111, 435-441.	1.1	37
23	Amplified Cold Transduction in Native Nociceptors by M-Channel Inhibition. Journal of Neuroscience, 2013, 33, 16627-16641.	1.7	37
24	The C-terminal basic residues contribute to the chemical- and voltage-dependent activation of TRPA1. Biochemical Journal, 2011, 433, 197-204.	1.7	36
25	Modelling the consequences of receptor–G-protein promiscuity. Trends in Pharmacological Sciences, 2002, 23, 171-176.	4.0	32
26	Intracellular spermine decreases open probability of N-methyl-d-aspartate receptor channels. Neuroscience, 2004, 125, 879-887.	1.1	31
27	Comprehensive thermal preference phenotyping in mice using a novel automated circular gradient assay. Temperature, 2016, 3, 77-91.	1.7	31
28	Human and Mouse TRPA1 Are Heat and Cold Sensors Differentially Tuned by Voltage. Cells, 2020, 9, 57.	1.8	30
29	Vanilloid receptor TRPV1 is not activated by vanilloids applied intracellularly. NeuroReport, 2003, 14, 1061-1065.	0.6	28
30	Evidence that excitatory amino acids not only activate the receptor channel complex but also lead to use-dependent block. Brain Research, 1986, 363, 148-151.	1.1	25
31	The effects of capsaicin and acidity on currents generated by noxious heat in cultured neonatal rat dorsal root ganglion neurones. Journal of Physiology, 2001, 533, 717-728.	1.3	25
32	Intracellular cavity of sensor domain controls allosteric gating of TRPA1 channel. Science Signaling, 2018, 11, .	1.6	25
33	Molecular and functional properties of synaptically activated NMDA receptors in neonatal motoneurons in rat spinal cord slices. European Journal of Neuroscience, 2000, 12, 955-963.	1.2	24
34	Oxidizing reagent copper-o-phenanthroline is an open channel blocker of the vanilloid receptor TRPV1. Neuropharmacology, 2004, 47, 273-285.	2.0	24
35	Essential role for the putative S6 inner pore region in the activation gating of the human TRPA1 channel. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1279-1288.	1.9	22
36	N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel. Scientific Reports, 2016, 6, 28700.	1.6	21

#	Article	IF	Citations
37	Spontaneous Openings of NMDA Receptor Channels in Cultured Rat Hippocampal Neurons. European Journal of Neuroscience, 1997, 9, 1999-2008.	1.2	20
38	Structural modeling and patch-clamp analysis of pain-related mutation TRPA1-N855S reveal inter-subunit salt bridges stabilizing the channel open state. Neuropharmacology, 2015, 93, 294-307.	2.0	20
39	Protons stabilize the closed conformation of gain-of-function mutants of the TRPV1 channel. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 520-528.	1.9	19
40	The First Extracellular Linker Is Important for Several Aspects of the Gating Mechanism of Human TRPA1 Channel. Frontiers in Molecular Neuroscience, 2017, 10, 16.	1.4	19
41	Voltage-dependent chloride channels with several substates in excised patches from mouse neuroblastoma cells. Neuroscience Letters, 1987, 77, 298-302.	1.0	18
42	Heat-resistant action potentials require TTX-resistant sodium channels NaV1.8 and NaV1.9. Journal of General Physiology, 2018, 150, 1125-1144.	0.9	17
43	Acute exposure to highâ€induction electromagnetic field affects activity of model peripheral sensory neurons. Journal of Cellular and Molecular Medicine, 2018, 22, 1355-1362.	1.6	16
44	ATP binding site on the C-terminus of the vanilloid receptor. Archives of Biochemistry and Biophysics, 2007, 465, 389-398.	1.4	15
45	Pore Helix Domain Is Critical to Camphor Sensitivity of Transient Receptor Potential Vanilloid 1 Channel. Anesthesiology, 2012, 116, 903-917.	1.3	15
46	Proximal C-Terminus Serves as a Signaling Hub for TRPA1 Channel Regulation via Its Interacting Molecules and Supramolecular Complexes. Frontiers in Physiology, 2020, 11, 189.	1.3	14
47	Dual effects of muscarinic M2 receptors on the synthesis of cyclic AMP in CHO cells. Life Sciences, 2001, 68, 2501-2510.	2.0	13
48	The effects of excessive heat on heat-activated membrane currents in cultured dorsal root ganglia neurons from neonatal rat. Pain, 2002, 95, 207-214.	2.0	13
49	Putative interaction site for membrane phospholipids controls activation of TRPA1 channel at physiological membrane potentials. FEBS Journal, 2019, 286, 3664-3683.	2.2	12
50	Vanilloid receptor TRPV1 is not activated by vanilloids applied intracellularly. NeuroReport, 2003, 14, 1061-1065.	0.6	11
51	Cytoplasmic Inter-Subunit Interface Controls Use-Dependence of Thermal Activation of TRPV3 Channel. International Journal of Molecular Sciences, 2019, 20, 3990.	1.8	10
52	Interaction of a peptide derived from C-terminus of human TRPA1 channel with model membranes mimicking the inner leaflet of the plasma membrane. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1147-1156.	1.4	9
53	Transient Receptor Potential Ankyrin 1 Channel: An Evolutionarily Tuned Thermosensor. Physiological Research, 2021, 70, 363-381.	0.4	9
54	Procaine excites nociceptors in cultures from dorsal root ganglion of the rat. Neuroscience Letters, 1999, 263, 49-52.	1.0	7

#	Article	IF	Citations
55	G-Protein Modulation of Glycine-resistant NMDA Receptor Desensitization in Rat Cultured Hippocampal Neurons. European Journal of Neuroscience, 1995, 7, 1826-1830.	1.2	6
56	Editorial [Hot topic: TRP Channels: From Understanding to Action (Guest Editor: Viktorie Vlachova)]. Current Pharmaceutical Biotechnology, 2011, 12, 1-2.	0.9	6
57	Cobaltions block l-glutamate and l-aspartate-induced currents in cultured neurons from embryonic chick spinal cord. Neuroscience Letters, 1985, 61, 345-350.	1.0	4
58	Glutamine-induced membrane currents in cultured chick spinal cord neurons. Neuroscience Letters, 1988, 90, 333-337.	1.0	4
59	Axotomy-induced change in the properties of (S)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor channels in rat motoneurons. Neuroscience, 2000, 99, 119-131.	1.1	4
60	The human transient receptor potential vanilloid 3 channel is sensitized via the ERK pathway. Journal of Biological Chemistry, 2017, 292, 21083-21091.	1.6	4
61	Membrane currents induced byl-homocysteic acid in mouse cultured hippocampal neurons. Neuroscience, 1992, 48, 813-819.	1.1	3
62	Cellular context determines primary characteristics of human TRPC5 as a coldâ€activated channel. Journal of Cellular Physiology, 2022, 237, 3614-3626.	2.0	3
63	Ionic currents in neuroblastoma clone E-7 cells. Neuroscience Letters, 1985, 55, 197-201.	1.0	2
64	Single K+ currents during differentiation of embryonic muscle cells in vitro. Biochimica Et Biophysica Acta - Biomembranes, 1989, 986, 146-150.	1.4	2
65	Activity dependent inhibition of TRPC1/4/5 channels by duloxetine involves voltage sensor-like domain. Biomedicine and Pharmacotherapy, 2022, 152, 113262.	2.5	2
66	Searching for Voltage Sensors in Thermosensitive TRP Channels. Biophysical Journal, 2012, 102, 30a.	0.2	0
67	S4-S5 Linker is Involved in Voltage-Dependent Gating of Human Transient Receptor Potential Ankyrin 1 Channel. Biophysical Journal, 2013, 104, 453a-454a.	0.2	0
68	Phospho-Mimetic Mutation at Ser602 Inactivates Human TRPA1 Channel. International Journal of Molecular Sciences, 2020, 21, 7995.	1.8	0