
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6520671/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Industrial Crops and Products, 2010, 32, 627-633.	2.5	314
2	Nanofibers from bagasse and rice straw: process optimization and properties. Wood Science and Technology, 2012, 46, 193-205.	1.4	151
3	Thermal behavior of cellulose and some cellulose derivatives. Polymer Degradation and Stability, 2000, 67, 111-115.	2.7	122
4	Novel nanofibrillated cellulose/chitosan nanoparticles nanocomposites films and their use for paper coating. Industrial Crops and Products, 2016, 93, 219-226.	2.5	99
5	Preparation and characterization of new cellulose nanocrystals from marine biomass Posidonia oceanica. Industrial Crops and Products, 2015, 72, 175-182.	2.5	97
6	Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a carrier system for the controlled release of repaglinide. International Journal of Biological Macromolecules, 2018, 111, 604-613.	3.6	93
7	Thermoplasticization of bagasse. I. preparation and characterization of esterified bagasse fibers. , 2000, 76, 561-574.		72
8	Effect of pretreatment of bagasse fibers on the properties of chitosan/microfibrillated cellulose nanocomposites. Journal of Materials Science, 2011, 46, 1732-1740.	1.7	67
9	Use of ZnO nanoparticles for protecting oil paintings on paper support against dirt, fungal attack, and UV aging. Journal of Cultural Heritage, 2014, 15, 165-172.	1.5	67
10	Novel nanofibrillated cellulose/polyvinylpyrrolidone/silver nanoparticles films with electrical conductivity properties. Carbohydrate Polymers, 2017, 157, 503-511.	5.1	67
11	Membranes Based on Cellulose Nanofibers and Activated Carbon for Removal of Escherichia coli Bacteria from Water. Polymers, 2017, 9, 335.	2.0	65
12	Structural changes of regenerated cellulose dissolved in FeTNa, NaOH/thiourea, and NMMO systems. Journal of Applied Polymer Science, 2008, 109, 2862-2871.	1.3	60
13	Ion exchange properties of carboxylated bagasse. Journal of Applied Polymer Science, 2006, 102, 1399-1404.	1.3	59
14	Enzyme-assisted isolation of microfibrillated cellulose from date palm fruit stalks. Industrial Crops and Products, 2014, 55, 102-108.	2.5	59
15	Fluorescent cellulose nanocrystals via supramolecular assembly of terpyridine-modified cellulose nanocrystals and terpyridine-modified perylene. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 350-358.	1.7	55
16	Effect of xylanase pretreatment of rice strawÂunbleached soda and neutral sulfite pulps on isolation of nanofibers and their properties. Cellulose, 2018, 25, 2939-2953.	2.4	47
17	Regioselective Dendritic Functionalization of Cellulose. Macromolecular Rapid Communications, 2004, 25, 1999-2002.	2.0	46
18	Electrical conductivity and dielectric properties of nanofibrillated cellulose thin films from bagasse. Journal of Physical Organic Chemistry, 2018, 31, e3851.	0.9	46

#	Article	IF	CITATIONS
19	Use of Bacterial Cellulose and Crosslinked Cellulose Nanofibers Membranes for Removal of Oil from Oil-in-Water Emulsions. Polymers, 2017, 9, 388.	2.0	43
20	Regioselective combinatorial-type synthesis, characterization, and physical properties of dendronized cellulose. Polymer, 2005, 46, 8947-8955.	1.8	42
21	Use of Cellulose and Oxidized Cellulose Nanocrystals from Olive Stones in Chitosan Bionanocomposites. Journal of Nanomaterials, 2015, 2015, 1-11.	1.5	42
22	Novel Zr(IV)/sugar beet pulp composite for removal of sulfate and nitrate anions. Journal of Applied Polymer Science, 2010, 117, 2205-2212.	1.3	40
23	Utilization of lignocellulosic fibers in molded polyester composites. Journal of Applied Polymer Science, 2003, 87, 653-660.	1.3	38
24	Heavy metal ion removal by amidoximated bagasse. Journal of Applied Polymer Science, 2003, 87, 666-670.	1.3	38
25	Phosphorylated cation-exchangers from cotton stalks and their constituents. Journal of Applied Polymer Science, 2003, 89, 2950-2956.	1.3	38
26	A new mixture of hydroxypropyl cellulose and nanocellulose for wood consolidation. Journal of Cultural Heritage, 2019, 35, 140-144.	1.5	36
27	Polycaprolactone/modified bagasse whisker nanocomposites with improved moistureâ€barrier and biodegradability properties. Journal of Applied Polymer Science, 2012, 125, E10.	1.3	35
28	Novel chitosan-ZnO based nanocomposites as luminescent tags for cellulosic materials. Carbohydrate Polymers, 2014, 99, 817-824.	5.1	35
29	Rice straw nanofibrillated cellulose films with antimicrobial properties via supramolecular route. Industrial Crops and Products, 2016, 93, 142-151.	2.5	34
30	Thermoplasticization of bagasse by cyanoethylation. Journal of Applied Polymer Science, 2001, 79, 1965-1978.	1.3	32
31	Palm rachis microfibrillated cellulose and oxidized-microfibrillated cellulose for improving paper sheets properties of unbeaten softwood and bagasse pulps. Industrial Crops and Products, 2015, 64, 9-15.	2.5	31
32	Thermoplasticization of bagasse. II. dimensional stability and mechanical properties of esterified bagasse composite. , 2000, 76, 575-586.		30
33	Improving cellulose/polypropylene nanocomposites properties with chemical modified bagasse nanofibers and maleated polypropylene. Journal of Reinforced Plastics and Composites, 2014, 33, 26-36.	1.6	29
34	New supramolecular metallo-terpyridine carboxymethyl cellulose derivatives with antimicrobial properties. Carbohydrate Polymers, 2015, 116, 2-8.	5.1	29
35	Chitosan/rice straw nanofibers nanocomposites: Preparation, mechanical, and dynamic thermomechanical properties. Journal of Applied Polymer Science, 2012, 125, E216.	1.3	27
36	Cellulose nanocrystals and carboxymethyl cellulose from olive stones and their use to improve paper sheets properties. International Journal of Nanoparticles, 2014, 7, 261.	0.1	25

#	Article	IF	CITATIONS
37	Injectable TEMPO-oxidized nanofibrillated cellulose/biphasic calcium phosphate hydrogel for bone regeneration. Journal of Biomaterials Applications, 2018, 32, 1371-1381.	1.2	25
38	Novel cellulose nanofibers/barium titanate nanoparticles nanocomposites and their electrical properties. Journal of Physical Organic Chemistry, 2019, 32, e3897.	0.9	23
39	Processing, Dynamic mechanical thermal analysis, and dielectric properties of barium titanate/cellulosic polymer nanocomposites. Polymer Composites, 2017, 38, 893-907.	2.3	21
40	Preparation and thermal stability of new cellulose-based poly(propylene imine) and poly(amido amine) hyperbranched derivatives. Journal of Applied Polymer Science, 2006, 101, 2079-2087.	1.3	20
41	Metallo-Terpyridine-Modified Cellulose Nanofiber Membranes for Papermaking Wastewater Purification. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 439-447.	1.9	18
42	Quaternization and anion exchange capacity of Sponge Gourd (Luffa cylindrica). Journal of Applied Polymer Science, 2006, 101, 2495-2503.	1.3	16
43	New Metallo-Supramolecular Terpyridine-Modified Cellulose Functional Nanomaterials. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 298-305.	1.2	16
44	Extraction of pectin from sugar beet pulp by enzymatic and ultrasound-assisted treatments. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100042.	1.6	16
45	Recycling of jute textile in phenol formaldehyde-jute composites. Journal of Applied Polymer Science, 2003, 90, 3588-3593.	1.3	15
46	Recycled old newsprint fibers as a reinforcing filler in molded polyester composites. Journal of Applied Polymer Science, 2001, 80, 2018-2023.	1.3	14
47	Mechanical, optical, and electrical properties of cellulosic semiconductor nanocomposites. Journal of Applied Polymer Science, 2010, 115, 2847-2854.	1.3	14
48	Improving tensile strength and moisture barrier properties of gelatin using microfibrillated cellulose. Journal of Composite Materials, 2013, 47, 1977-1985.	1.2	13
49	Effect of pectin extraction method on properties of cellulose nanofibers isolated from sugar beet pulp. Cellulose, 2021, 28, 10905-10920.	2.4	13
50	Electrical properties of FeII -terpyridine-Modified cellulose nanocrystals and polycaprolactone/FeII -CTP nanocomposites. Polymer Composites, 2016, 37, 2734-2743.	2.3	12
51	Use of sugar beet cellulose nanofibers for paper coating. Industrial Crops and Products, 2022, 180, 114787.	2.5	12
52	Acrylate/Nanofibrillated Cellulose Nanocomposites and Their Use for Paper Coating. Journal of Nanomaterials, 2018, 2018, 1-10.	1.5	11
53	New pectin derivatives with antimicrobial and emulsification properties via complexation with metal-terpyridines. Carbohydrate Polymers, 2021, 268, 118230.	5.1	11
54	Dendronized Cellulose Nanocrystals as Templates for Preparation of ZnS and CdS Quantum Dots. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 743-749.	1.2	9

#	Article	IF	CITATIONS
55	Enzyme- and acid-extracted sugar beet pectin as green corrosion inhibitors for mild steel in hydrochloric acid solution. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100072.	1.6	9
56	Synthesis and characterization high purity alumina nanorods by a novel and simple method using nanocellulose aerogel template. Heliyon, 2019, 5, e01816.	1.4	8
57	Artificial aging and deterioration of oilâ€painted Fabriano paper and cardboard paper supports. Journal of Applied Polymer Science, 2008, 109, 1594-1603.	1.3	7
58	Testing of medical tablets produced with microcrystalline cellulose prepared from agricultural wastes. Polymer Composites, 2014, 35, 1343-1349.	2.3	7
59	Bagasse and Rice Straw Nanocellulosic Materials and Their Applications. , 2015, , 47-64.		7
60	A novel dental re-mineralizing blend of hydroxyethyl-cellulose and cellulose nanofibers oral film loaded with nepheline apatite glass: Preparation, characterization and in vitro evaluation of re-mineralizing effect. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100035.	1.6	7
61	Dielectric properties of cyanoethylated bagasse composites. Polymer-Plastics Technology and Engineering, 2002, 41, 589-600.	1.9	5
62	High dielectric flexible thin films based on cellulose nanofibers and zinc sulfide nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 276, 115538.	1.7	3
63	Rice straw paper sheets reinforced with bleached or unbleached nanofibers. Nordic Pulp and Paper Research Journal, 2021, 36, 139-148.	0.3	2
64	Date Palm Nano Composites Applications and Future Trends. , 2020, , 419-440.		0

Date Palm Nano Composites Applications and Future Trends. , 2020, , 419-440. 64