
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6520657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoporous Gold Catalysts for Selective Gas-Phase Oxidative Coupling of Methanol at Low Temperature. Science, 2010, 327, 319-322.	6.0	1,022
2	Metal deposits on well-ordered oxide films. Progress in Surface Science, 1999, 61, 127-198.	3.8	931
3	Surface-chemistry-driven actuation in nanoporousÂgold. Nature Materials, 2009, 8, 47-51.	13.3	488
4	Gold Catalysts: Nanoporous Gold Foams. Angewandte Chemie - International Edition, 2006, 45, 8241-8244.	7.2	476
5	Structure and defects of an ordered alumina film on NiAl(110). Surface Science, 1994, 318, 61-73.	0.8	311
6	Nanoporous gold: a new material for catalytic and sensor applications. Physical Chemistry Chemical Physics, 2010, 12, 12919.	1.3	306
7	Palladium Nanocrystals onAl2O3: Structure and Adhesion Energy. Physical Review Letters, 1999, 83, 4120-4123.	2.9	302
8	The application of infrared spectroscopy to probe the surface morphology of alumina-supported palladium catalysts. Journal of Chemical Physics, 2005, 123, 174706.	1.2	276
9	Vibrational spectra of alumina- and silica-supported vanadia revisited: An experimental and theoretical model catalyst study. Journal of Catalysis, 2004, 226, 88-100.	3.1	258
10	Ultralow Loading Pt Nanocatalysts Prepared by Atomic Layer Deposition on Carbon Aerogels. Nano Letters, 2008, 8, 2405-2409.	4.5	244
11	Nanoporous Au: An Unsupported Pure Gold Catalyst?. Journal of Physical Chemistry C, 2009, 113, 5593-5600.	1.5	232
12	ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity. Nano Letters, 2011, 11, 3085-3090.	4.5	212
13	Size and Support Effects for CO Adsorption on Gold Model Catalysts. Catalysis Letters, 2003, 86, 211-219.	1.4	166
14	From atoms to crystallites: adsorption on oxide-supported metal particles. Physical Chemistry Chemical Physics, 2000, 2, 3723-3737.	1.3	165
15	Hydroxy1 driven reconstruction of the polar NiO(111) surface. Surface Science, 1994, 315, L977-L982.	0.8	163
16	Infrared spectroscopic investigation of CO adsorbed on Pd aggregates deposited on an alumina model support. Surface Science, 1998, 399, 190-198.	0.8	161
17	Preparation and characterization of model catalysts: from ultrahigh vacuum to in situ conditions at the atomic dimension. Journal of Catalysis, 2003, 216, 223-235.	3.1	155
18	Structure Sensitivity of CO Dissociation on Rh Surfaces. Catalysis Letters, 2002, 81, 153-156.	1.4	153

#	Article	IF	CITATIONS
19	Strong relaxations at the Cr2O3(0001) surface as determined via low-energy electron diffraction and molecular dynamics simulations. Surface Science, 1997, 372, L291-L297.	0.8	140
20	Structure–Reactivity Relationships on Supported Metal Model Catalysts: Adsorption and Reaction of Ethene and Hydrogen on Pd/Al2O3/NiAl(110). Journal of Catalysis, 2001, 200, 330-339.	3.1	135
21	The structure of thin NiO(100) films grown on Ni(100) as determined by low-energy-electron diffraction and scanning tunneling microscopy. Surface Science, 1991, 253, 116-128.	0.8	129
22	Title is missing!. Topics in Catalysis, 2001, 15, 201-209.	1.3	129
23	Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold. Physical Chemistry Chemical Physics, 2011, 13, 4529.	1.3	121
24	Interaction of rhodium with hydroxylated alumina model substrates. Surface Science, 1997, 384, 106-119.	0.8	119
25	Surface Chemistry in Nanoscale Materials. Materials, 2009, 2, 2404-2428.	1.3	119
26	Universal Phenomena of CO Adsorption on Gold Surfaces with Low-Coordinated Sites. Journal of Physical Chemistry C, 2007, 111, 445-451.	1.5	116
27	Catalysis by Unsupported Skeletal Gold Catalysts. Accounts of Chemical Research, 2014, 47, 731-739.	7.6	114
28	Interaction of oxygen with palladium deposited on a thin alumina film. Surface Science, 2002, 501, 270-281.	0.8	111
29	Nanoporous Gold as a Platform for a Building Block Catalyst. ACS Catalysis, 2012, 2, 2199-2215.	5.5	108
30	The structure of Pt-aggregates on a supported thin aluminum oxide film in comparison with unsupported alumina: a transmission electron microscopy study. Surface Science, 1997, 391, 27-36.	0.8	106
31	Oxygenâ€Mediated Coupling of Alcohols over Nanoporous Gold Catalysts at Ambient Pressures. Angewandte Chemie - International Edition, 2012, 51, 1698-1701.	7.2	106
32	Adsorption and reaction of methanol on supported palladium catalysts: microscopic-level studies from ultrahigh vacuum to ambient pressure conditions. Physical Chemistry Chemical Physics, 2007, 9, 3541-3558.	1.3	100
33	Electronic structure and growth of vanadium on TiO2(110). Surface Science, 2000, 450, 12-26.	0.8	96
34	Probing Degradation by IL-TEM: The Influence of Stress Test Conditions on the Degradation Mechanism. Journal of the Electrochemical Society, 2013, 160, F608-F615.	1.3	96
35	Preparation and Characterization of a Model Bimetallic Catalyst: Co–Pd Nanoparticles Supported on Al2O3. Angewandte Chemie - International Edition, 2002, 41, 4073-4076.	7.2	95
36	Nanostructured Praseodymium Oxide:  Preparation, Structure, and Catalytic Properties. Journal of Physical Chemistry C, 2008, 112, 3054-3063.	1.5	95

#	Article	IF	CITATIONS
37	Study of CO adsorption on crystalline-silica-supported palladium particles. Surface Science, 2002, 498, L71-L77.	0.8	94
38	Pt/Sn Intermetallic, Core/Shell and Alloy Nanoparticles: Colloidal Synthesis and Structural Control. Chemistry of Materials, 2013, 25, 1400-1407.	3.2	88
39	Model Catalyst Studies on Vanadia Particles Deposited onto a Thin-Film Alumina Support. 1. Structural Characterization. Journal of Physical Chemistry B, 2002, 106, 8756-8761.	1.2	86
40	The interaction of oxygen with alumina-supported palladium particles. Catalysis Letters, 2001, 71, 5-13.	1.4	85
41	Morphological and electronic properties of ultrathin crystalline silica epilayers on a Mo(112) substrate. Physical Review B, 2002, 66, .	1.1	85
42	The Structure and Reactivity of Al2O3-Supported Cobaltâ^'Palladium Particles:  A CO-TPD, STM, and XPS Study. Journal of Physical Chemistry B, 2003, 107, 778-785.	1.2	84
43	Metal–oxide interaction for metal clusters on a metal-supported thin alumina film. Surface Science, 1999, 442, L964-L970.	0.8	83
44	On the thermal stability of metal particles supported on a thin alumina film. Surface Science, 2003, 523, 103-110.	0.8	83
45	Nanoporous gold: a new gold catalyst with tunable properties. Faraday Discussions, 2011, 152, 87.	1.6	82
46	Bimetallic Co–Pd catalysts: Study of preparation methods and their influence on the selective hydrogenation of acetylene. Journal of Catalysis, 2013, 300, 125-135.	3.1	81
47	Particle size dependent CO dissociation on alumina-supported Rh: a model study. Chemical Physics Letters, 1997, 279, 92-99.	1.2	80
48	Supported colloidal nanoparticles in heterogeneous gas phase catalysis: on the way to tailored catalysts. Physical Chemistry Chemical Physics, 2011, 13, 19270.	1.3	80
49	Adsorption on a polar oxide surface: O2, C2H4and Na on Cr2O3(0001)/Cr(110). Faraday Discussions, 1996, 105, 295-315.	1.6	78
50	The influence of OH groups on the growth of rhodium on alumina: a model study. Catalysis Letters, 2000, 68, 19-24.	1.4	77
51	Nucleation and growth of transition metals on a thin alumina film. Surface Science, 2000, 454-456, 957-962.	0.8	75
52	Structural rearrangement and surface magnetism on oxide surfaces: a temperature-dependent low-energy electron diffraction-electron energy loss spectroscopy study of Cr2O3(111)/Cr(110). Journal of Physics Condensed Matter, 1995, 7, 5289-5301.	0.7	74
53	Catalysis and surface science: What do we learn from studies of oxide-supported cluster model systems?. Advances in Catalysis, 2000, 45, 333-384.	0.1	71
54	The particle proximity effect: from model to high surface area fuel cell catalysts. RSC Advances, 2014, 4, 14971.	1.7	70

#	Article	IF	CITATIONS
55	Adsorption on oxide surfaces: structure and dynamics. Surface Science, 1994, 307-309, 1148-1160.	0.8	68
56	Determination of Atomic Structure of the Metal-Oxide Interface: Pd Nanodeposits on an FeO(111) Film. Physical Review Letters, 2003, 91, 076102.	2.9	68
57	Ligand Capping of Colloidally Synthesized Nanoparticles—A Way to Tune Metal–Support Interactions in Heterogeneous Gasâ€Phase Catalysis. Angewandte Chemie - International Edition, 2011, 50, 3888-3891.	7.2	68
58	Metal Atoms and Particles on Oxide Supports:  Probing Structure and Charge by Infrared Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 8569-8576.	1.2	65
59	Pt based PEMFC catalysts prepared from colloidal particle suspensions – a toolbox for model studies. Physical Chemistry Chemical Physics, 2013, 15, 3602.	1.3	64
60	Interaction of CO with Pd clusters supported on a thin alumina film. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 1546-1551.	0.9	63
61	Infrared study of CO adsorption on alumina supported palladium particles. Surface Science, 1998, 402-404, 428-432.	0.8	62
62	Effect of Carbon Deposits on Reactivity of Supported Pd Model Catalysts. Catalysis Letters, 2002, 80, 115-122.	1.4	62
63	Structural and Chemical Effects of Plasma Treatment on Closeâ€Packed Colloidal Nanoparticle Layers. Advanced Functional Materials, 2008, 18, 2398-2410.	7.8	62
64	CO dissociation characteristics on size-distributed rhodium islands on alumina model substrates. Journal of Chemical Physics, 1998, 108, 2967-2974.	1.2	58
65	Vibrational spectroscopy of CO adsorbed on supported ultra-small transition metal particles and single metal atoms. Surface Science, 2000, 454-456, 968-973.	0.8	58
66	Structural characterization of platinum deposits supported on ordered alumina films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 2259-2264.	0.9	57
67	Highly active Co–Al ₂ O ₃ -based catalysts for CO ₂ methanation with very low platinum promotion prepared by double flame spray pyrolysis. Catalysis Science and Technology, 2016, 6, 7449-7460.	2.1	57
68	Ligand-Capped Pt Nanocrystals as Oxide-Supported Catalysts: FTIR Spectroscopic Investigations of the Adsorption and Oxidation of CO. Angewandte Chemie - International Edition, 2007, 46, 2923-2926.	7.2	55
69	Heterogeneous catalysis with supported platinum colloids: A systematic study of the interplay between support and functional ligands. Journal of Catalysis, 2011, 278, 143-152.	3.1	55
70	Colloidal Synthesis and Structural Control of PtSn Bimetallic Nanoparticles. Langmuir, 2011, 27, 11052-11061.	1.6	55
71	Double flame spray pyrolysis as a novel technique to synthesize alumina-supported cobalt Fischer–Tropsch catalysts. Catalysis Today, 2013, 214, 90-99.	2.2	55
72	A synchrotron study of the deposition of vanadia on TiO2(110). Surface Science, 1999, 432, 178-188.	0.8	54

#	Article	IF	CITATIONS
73	Pd nanoparticles with highly defined structure on MgO as model catalysts: An FTIR study of the interaction with CO, O2, and H2 under ambient conditions. Journal of Catalysis, 2007, 247, 145-154.	3.1	54
74	Vibrational structure of excited states of molecules on oxide surfaces. Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65, 217-225.	0.8	53
75	Oxygen-inducedp(2×3)reconstruction on Mo(112) studied by LEED and STM. Physical Review B, 2002, 65, .	1.1	53
76	Cluster, facets, and edges: Site-dependent selective chemistry on model catalysts. Chemical Record, 2003, 3, 181-201.	2.9	53
77	Metal deposition in adsorbate atmosphere: growth and decomposition of a palladium carbonyl-like species. Surface Science, 1996, 346, 108-126.	0.8	52
78	Accumulation of Iron Oxide Nanoparticles by Cultured Brain Astrocytes. Journal of Biomedical Nanotechnology, 2009, 5, 285-293.	0.5	52
79	Structure investigation of the topmost layer of a thin ordered alumina film grown on NiAl(110) by low temperature scanning tunneling microscopy. Chemical Physics Letters, 2002, 359, 41-47.	1.2	51
80	Toward Controlled Modification of Nanoporous Gold. A Detailed Surface Science Study on Cleaning and Oxidation. Journal of Physical Chemistry C, 2012, 116, 4564-4571.	1.5	51
81	Growth and morphology of Rh deposits on an alumina film under UHV conditions and under the influence of CO. Surface Science, 1997, 391, 204-215.	0.8	50
82	Phonons of clean and metal-modified oxide films: an infrared and HREELS study. Surface Science, 2001, 492, 270-284.	0.8	50
83	CO2 methanation and reverse water gas shift reaction. Kinetic study based on in situ spatially-resolved measurements. Chemical Engineering Journal, 2020, 390, 124629.	6.6	50
84	A fast and sensitive catalytic gas sensors for hydrogen detection based on stabilized nanoparticles as catalytic layer. Sensors and Actuators B: Chemical, 2014, 193, 895-903.	4.0	49
85	Synthesis and Properties of Porous Hybrid Materials containing Metallic Nanoparticles. Advanced Engineering Materials, 2008, 10, 241-245.	1.6	48
86	Oxide-supported Rh particle structure probed with carbon monoxide. Surface Science, 1999, 427-428, 288-293.	0.8	45
87	New gold and silver-gold catalysts in the shape of sponges and sieves. Gold Bulletin, 2007, 40, 142-149.	3.2	45
88	Influence of Organic Amino and Thiol Ligands on the Geometric and Electronic Surface Properties of Colloidally Prepared Platinum Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 8925-8932.	1.5	45
89	Effects of Li Doping on MgO-Supported Sm ₂ O ₃ and TbO _{<i>x</i>} Catalysts in the Oxidative Coupling of Methane. ACS Catalysis, 2014, 4, 1972-1990.	5.5	45
90	In situ investigation of pore clogging during discharge of a Li/O2 battery by electrochemical impedance spectroscopy. Journal of Power Sources, 2015, 278, 255-264.	4.0	45

#	Article	IF	CITATIONS
91	Growth, electronic properties and reactivity of vanadium deposited onto a thin alumina film. Surface Science, 1999, 432, 189-198.	0.8	44
92	Alumina-Supported Vanadium Nanoparticles:Â Structural Characterization and CO Adsorption Properties. Journal of the American Chemical Society, 2004, 126, 3616-3626.	6.6	43
93	Transition from a molecular to a metallic adsorbate system:mCore-hole creation and decay dynamics for CO coordinated to Pd. Physical Review B, 1997, 55, 7233-7243.	1.1	41
94	Single crystalline silicon dioxide films on Mo(112). Solid-State Electronics, 2001, 45, 1471-1478.	0.8	41
95	Chemisorbed Oxygen on the Au(321) Surface Alloyed with Silver: A First-Principles Investigation. Journal of Physical Chemistry C, 2015, 119, 9215-9226.	1.5	41
96	Surface structure of Co–Pd bimetallic particles supported on Al2O3 thin films studied using infrared reflection absorption spectroscopy of CO. Journal of Chemical Physics, 2003, 119, 10885-10894.	1.2	40
97	Effect of Surface Chemistry on the Stability of Gold Nanostructures. Langmuir, 2010, 26, 13736-13740.	1.6	40
98	A synchrotron study of the growth of vanadium oxide on Al2O3(0001). Surface Science, 1999, 441, 1-9.	0.8	37
99	On the Role of Oxygen in Stabilizing Low-Coordinated Au Atoms. ChemPhysChem, 2006, 7, 1906-1908.	1.0	37
100	CO oxidation on nanoporous gold: A combined TPD and XPS study of active catalysts. Surface Science, 2013, 609, 106-112.	0.8	37
101	Steam reforming of methanol over oxide decorated nanoporous gold catalysts: a combined in situ FTIR and flow reactor study. Physical Chemistry Chemical Physics, 2017, 19, 8880-8888.	1.3	37
102	The temperature dependent growth mode of nickel on the basal plane of graphite. Surface Science, 1995, 327, 321-329.	0.8	36
103	Growth of well-ordered silicon dioxide films on Mo(112). Microelectronics Reliability, 2000, 40, 841-844.	0.9	36
104	Effects of particle size, composition, and support on catalytic activity of AuAg nanoparticles prepared in reverse block copolymer micelles as nanoreactors. Journal of Catalysis, 2013, 299, 222-231.	3.1	36
105	Electron spectroscopy studies of small deposited metal particles. Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 301-306.	0.8	35
106	STM studies of rhodium deposits on an ordered alumina film-resolution and tip effects. Surface Science, 1998, 402-404, 424-427.	0.8	35
107	Using IR intensities as a probe for studying the surface chemical bond. Surface Science, 2003, 546, L829-L835.	0.8	35
108	Oxidation of Alumina-Supported Co and Coâ^'Pd Model Catalysts for the Fischerâ^'Tropsch Reaction. Journal of Physical Chemistry C, 2007, 111, 8566-8572.	1.5	35

#	Article	IF	CITATIONS
109	Colloidally Prepared Pt Nanoparticles for Heterogeneous Gasâ€Phase Catalysis: Influence of Ligand Shell and Catalyst Loading on CO Oxidation Activity. ChemCatChem, 2010, 2, 198-205.	1.8	35
110	A sol–gel methodology for the preparation of lanthanide-oxide aerogels: preparation and characterization. Journal of Sol-Gel Science and Technology, 2012, 64, 381-389.	1.1	35
111	Maximizing Activity and Stability by Turning Gold Catalysis Upside Down: Oxide Particles on Nanoporous Gold. ChemCatChem, 2013, 5, 2037-2043.	1.8	35
112	Nanostructured Praseodymium Oxide: Correlation Between Phase Transitions and Catalytic Activity. ChemCatChem, 2010, 2, 694-704.	1.8	33
113	Role of Palladium in Iron Based Fischerâ^'Tropsch Catalysts Prepared by Flame Spray Pyrolysis. Journal of Physical Chemistry C, 2011, 115, 1302-1310.	1.5	33
114	Stabilization of the ceria \hat{l}^1 -phase (Ce7O12) surface on Si(111). Applied Physics Letters, 2013, 102, .	1.5	33
115	Fluid distribution and pore wettability of monolithic carbon xerogels measured by 1H NMR relaxation. Carbon, 2014, 68, 542-552.	5.4	31
116	Photoemission study of praseodymia in its highest oxidation state: The necessity of <i>in situ</i> plasma treatment. Journal of Chemical Physics, 2011, 134, 054701.	1.2	30
117	Structural transitions of epitaxial ceria films on Si(111). Physical Chemistry Chemical Physics, 2013, 15, 18589.	1.3	30
118	A versatile sol–gel coating for mixed oxides on nanoporous gold and their application in the water gas shift reaction. Catalysis Science and Technology, 2016, 6, 5311-5319.	2.1	30
119	Adsorption and reaction of ethene on oxide-supported Pd, Rh, and Ir particles. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 1497-1501.	0.9	29
120	Colloidally Prepared Nanoparticles for the Synthesis of Structurally Wellâ€Defined and Highly Active Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2008, 47, 8946-8949.	7.2	29
121	Synthesis of stable AuAg bimetallic nanoparticles encapsulated by diblock copolymer micelles. Nanoscale, 2012, 4, 1658.	2.8	29
122	Distribution of discharge products inside of the lithium/oxygen battery cathode. Journal of Power Sources, 2015, 299, 162-169.	4.0	29
123	Cobalt@Silica Coreâ€Shell Catalysts for Hydrogenation of CO/CO ₂ Mixtures to Methane. ChemCatChem, 2019, 11, 4884-4893.	1.8	29
124	Insights into the reaction mechanism and particle size effects of CO oxidation over supported Pt nanoparticle catalysts. Journal of Catalysis, 2019, 377, 662-672.	3.1	29
125	Evidence for Pdx(CO)y compound formation on an alumina substrate. Chemical Physics Letters, 1995, 240, 429-434.	1.2	28
126	Growth and electronic structure of vanadium on α-Al2O3(0001). Surface Science, 2000, 449, 50-60.	0.8	28

#	Article	IF	CITATIONS
127	Decomposition of methanol by Pd, Co, and bimetallic Co–Pd catalysts: A combined study of well-defined systems under ambient and UHV conditions. Journal of Catalysis, 2008, 256, 24-36.	3.1	28
128	The growth of vanadium oxide on alumina and titania single crystal surfaces. Faraday Discussions, 1999, 114, 67-84.	1.6	27
129	A miniaturized catalytic gas sensor for hydrogen detection based on stabilized nanoparticles as catalytic layer. Sensors and Actuators B: Chemical, 2013, 187, 420-425.	4.0	27
130	Nanoporous Gold-Supported Ceria for the Water–Gas Shift Reaction: UHV Inspired Design for Applied Catalysis. Journal of Physical Chemistry C, 2014, 118, 29270-29277.	1.5	27
131	Colloidal Nanoparticles Embedded in Ceramers: Toward Structurally Designed Catalysts. Journal of Physical Chemistry C, 2010, 114, 14224-14232.	1.5	26
132	CO oxidation by co-adsorbed atomic O on the Au(321) surface with Ag impurities: A mechanistic study from first-principles calculations. Chemical Physics Letters, 2012, 525-526, 87-91.	1.2	26
133	Growth and Partial Reduction of Sm ₂ O ₃ (111) Thin Films on Pt(111): Evidence for the Formation of SmO(100). Journal of Physical Chemistry C, 2013, 117, 21396-21406.	1.5	26
134	Controlling the physics and chemistry of binary and ternary praseodymium and cerium oxide systems. Physical Chemistry Chemical Physics, 2015, 17, 24513-24540.	1.3	26
135	Rational Design of Functional Oxide Thin Films with Embedded Magnetic or Plasmonic Metallic Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 9957-9960.	7.2	25
136	Stabilizing Catalytically Active Nanoparticles by Ligand Linking: Toward Three-Dimensional Networks with High Catalytic Surface Area. Langmuir, 2014, 30, 5564-5573.	1.6	25
137	Oxygen-Driven Surface Evolution of Nanoporous Gold: Insights from Ab Initio Molecular Dynamics and Auger Electron Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 5349-5357.	1.5	25
138	Heteroepitaxial praseodymium sesquioxide films on Si(111): A new model catalyst system for praseodymium oxide based catalysts. Surface Science, 2007, 601, 1473-1480.	0.8	24
139	Intrinsically green iron oxide nanoparticles? From synthesis via (eco-)toxicology to scenario modelling. Nanoscale, 2013, 5, 1034-1046.	2.8	24
140	Highly Active Sm2O3â€Ni Xerogel Catalysts for CO2Methanation. ChemCatChem, 2019, 11, 1732-1741.	1.8	24
141	From single crystal model catalysts to systematic studies of supported nanoparticles. Surface Science, 2015, 631, 278-284.	0.8	23
142	Two-dimensional growth of Pd on a thin FeO(111) film: a physical manifestation of strong metal–support interaction. Surface Science, 2003, 546, L813-L819.	0.8	22
143	Metal Support Interactions in Co3O4/Al2O3 Catalysts Prepared from w/o Microemulsions. Catalysis Letters, 2012, 142, 830-837.	1.4	22
144	Quantitative Phase Composition of TiO ₂ -Coated Nanoporous Au Monoliths by X-ray Absorption Spectroscopy and Correlations to Catalytic Behavior. Journal of Physical Chemistry C, 2014, 118, 4078-4084.	1.5	22

#	Article	IF	CITATIONS
145	Independent control over residual silver content of nanoporous gold by galvanodynamically controlled dealloying. Nanoscale, 2018, 10, 17166-17173.	2.8	22
146	Electronic and geometric structure of adsorbates on oxide surfaces. Journal of Electron Spectroscopy and Related Phenomena, 1994, 68, 347-355.	0.8	21
147	Model Catalyst Studies on Vanadia Particles Deposited onto a Thin-Film Alumina Support. 2. Interaction with Carbon Monoxide. Journal of Physical Chemistry B, 2003, 107, 9003-9010.	1.2	21
148	Ethylene diamine-assisted synthesis of iron oxide nanoparticles in high-boiling polyolys. Journal of Colloid and Interface Science, 2014, 417, 188-198.	5.0	21
149	IR spectroscopy of a Pd-carbonyl surface compound. Chemical Physics Letters, 1997, 277, 513-520.	1.2	20
150	Colloidally Prepared Pt Nanowires versus Impregnated Pt Nanoparticles: Comparison of Adsorption and Reaction Properties. Langmuir, 2010, 26, 16330-16338.	1.6	20
151	Bimetallic AuAg Nanoparticles: Enhancing the Catalytic Activity of Au for Reduction Reactions in the Liquid Phase by Addition of Ag. ChemPhysChem, 2013, 14, 1577-1581.	1.0	20
152	Adsorption and Diffusion of Hydrogen on the Surface of the Pt ₂₄ Subnanoparticle. A DFT Study. Journal of Physical Chemistry C, 2016, 120, 18570-18587.	1.5	20
153	Effects of Particle Size on Strong Metal–Support Interactions Using Colloidal "Surfactant-Free―Pt Nanoparticles Supported on Fe ₃ O ₄ . ACS Catalysis, 2020, 10, 4136-4150.	5.5	19
154	Composition-dependent sintering behaviour of chemically synthesised CuNi nanoparticles and their application in aerosol printing for preparation of conductive microstructures. Colloid and Polymer Science, 2012, 290, 941-952.	1.0	18
155	Ligand-stabilized Pt nanoparticles (NPs) as novel materials for catalytic gas sensing: influence of the ligand on important catalytic properties. Physical Chemistry Chemical Physics, 2014, 16, 21243-21251.	1.3	18
156	Oxidative Coupling of Alcohols and Amines over Bimetallic Unsupported Nanoporous Gold: Tailored Activity through Mechanistic Predictability. ChemCatChem, 2015, 7, 70-74.	1.8	18
157	On the support dependency of the CO ₂ methanation – decoupling size and support effects. Catalysis Science and Technology, 2021, 11, 4098-4114.	2.1	18
158	Absence of Subsurface Oxygen Effects in the Oxidation of Olefins on Au: Styrene Oxidation over Sputtered Au(111). Journal of Physical Chemistry C, 2009, 113, 8924-8929.	1.5	17
159	Novel catalytic gas sensors based on functionalized nanoparticle layers. Sensors and Actuators B: Chemical, 2012, 174, 145-152.	4.0	17
160	Surface Functionalization of Iron Oxide Nanoparticles and their Stability in Different Media. ChemPlusChem, 2012, 77, 576-583.	1.3	17
161	Enhanced catalytic methane coupling using novel ceramic foams with bimodal porosity. Catalysis Science and Technology, 2013, 3, 89-93.	2.1	17
162	Temperature-Dependent Reduction of Epitaxial Ce _{1–<i>x</i>} Pr _{<i>x</i>} O _{2â^'δ} (<i>x</i> = 0–1) Thin Films on Si(111): Combined Temperature-Programmed Desorption, X-ray Diffraction, X-ray Photoelectron Spectroscopy, and Raman Study. Journal of Physical Chemistry C, 2013, 117, 24851-24857.	А _{1.5}	17

#	Article	IF	CITATIONS
163	Temperature Modulation of a Catalytic Gas Sensor. Sensors, 2014, 14, 20372-20381.	2.1	17
164	Methanol oxidation on the Au(3 1 0) surface: A theoretical study. Journal of Catalysis, 2018, 364, 216-227.	3.1	17
165	Halideâ€Induced Leaching of Pt Nanoparticles – Manipulation of Particle Size by Controlled Ostwald Ripening. ChemNanoMat, 2019, 5, 462-471.	1.5	17
166	Novel nanoparticle catalysts for catalytic gas sensing. Catalysis Science and Technology, 2016, 6, 339-348.	2.1	16
167	CVD of Conducting Ultrathin Copper Films. Journal of the Electrochemical Society, 2009, 156, D452.	1.3	15
168	The origin of a large apparent tortuosity factor for the Knudsen diffusion inside monoliths of a samaria–alumina aerogel catalyst: a diffusion NMR study. Physical Chemistry Chemical Physics, 2015, 17, 27481-27487.	1.3	15
169	Influence of Sn content on the hydrogenation of crotonaldehyde catalysed by colloidally prepared PtSn nanoparticles. Physical Chemistry Chemical Physics, 2015, 17, 28186-28192.	1.3	15
170	Influence of Water on Chemical Vapor Deposition of Ni and Co thin films from ethanol solutions of acetylacetonate precursors. Scientific Reports, 2016, 5, 18194.	1.6	15
171	Observation of a low-energy adsorbate core-level satellite for CO bonded to palladium: Coordination-dependent effects. Physical Review B, 1998, 57, 13199-13208.	1.1	14
172	Growth of praseodymium oxide on Si(111) under oxygen-deficient conditions. Physical Review B, 2009, 80, .	1.1	14
173	A versatile synthetic strategy for nanoporous gold–organic hybrid materials for electrochemistry and photocatalysis. Tetrahedron, 2014, 70, 6127-6133.	1.0	14
174	The Influence of the Pyrolysis Temperature on the Material Properties of Cobalt and Nickel Containing Precursor Derived Ceramics and their Catalytic Use for CO2 Methanation and Fischer–Tropsch Synthesis. Catalysis Letters, 2017, 147, 472-482.	1.4	14
175	Digitization in Catalysis Research: Towards a Holistic Description of a Ni/Al ₂ O ₃ Reference Catalyst for CO ₂ Methanation. ChemCatChem, 2022, 14, .	1.8	14
176	Generation of Pt- and Pt/Zn-containing ceramers and their structuring as macro/microporous foams. Chemical Engineering Journal, 2014, 247, 205-215.	6.6	13
177	Growth, Structure, and Stability of the High-Index TbO _{<i>x</i>} (112) Surface on Cu(111). Journal of Physical Chemistry C, 2015, 119, 14175-14184.	1.5	13
178	Assessment of PBE+U and HSE06 methods and determination of optimal parameter U for the structural and energetic properties of rare earth oxides. Journal of Chemical Physics, 2020, 153, 164710.	1.2	13
179	Adsorption and reaction on pristine and oxidized Co–Pd bimetallic particles supported on Al2O3 thin films. Surface Science, 2003, 545, 143-153.	0.8	12
180	Modification of surface properties of thin polysaccharide films by low-energy electron exposure. Carbohydrate Polymers, 2011, 83, 608-615.	5.1	12

#	ARTICLES behavior of twin-free type- <mml:math <="" th="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><th>IF</th><th>CITATIONS</th></mml:math>	IF	CITATIONS
181	display="inline"> <mmi:mi>8</mmi:mi> oriented CeO <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mmi:math /><mmi:mn>2</mmi:mn>(111) films on hexagonal Pr<mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mmi:msub><mmi:math< td=""><td>1.1</td><td>12</td></mmi:math<></mmi:msub></mmi:math </mmi:math </mmi:math 	1.1	12
182	Stoichiometry–structure correlation of epitaxial Ce1â^'Pr O2â^' (x=0â^'1) thin films on Si(111). Journal of Crystal Growth, 2012, 355, 159-165.	0.7	12
183	Impact of Organic Ligands on the Structure and Hydrogenation Performance of Colloidally Prepared Bimetallic PtSn Nanoparticles. ChemCatChem, 2013, 5, 1803-1810.	1.8	12
184	Influence of calcium carbonate and slip agent addition on linear medium density polyethylene processed by rotational molding. Materials Research, 2014, 17, 130-137.	0.6	12
185	1-Naphthylamine functionalized Pt nanoparticles: electrochemical activity and redox chemistry occurring on one surface. New Journal of Chemistry, 2015, 39, 2557-2564.	1.4	12
186	Comparing Coâ€catalytic Effects of ZrO _x , SmO _x , and Pt on CO _x Methanation over Coâ€based Catalysts Prepared by Double Flame Spray Pyrolysis. ChemCatChem, 2021, 13, 2815-2831.	1.8	12
187	Temperature dependent XPS study of CO dissociation on small Rh particles. Vacuum, 1998, 49, 167-170.	1.6	11
188	FMR studies on ultrathin metallic films grown on Al2O3 surfaces. Journal of Magnetism and Magnetic Materials, 1999, 198-199, 354-356.	1.0	11
189	UHV Studies of Methanol Decomposition on Mono―and Bimetallic CoPd Nanoparticles Supported on Thin Alumina Films. ChemPhysChem, 2008, 9, 729-739.	1.0	11
190	Improving the quality of nanoparticle production by using a new biphasic synthesis in a slug flow microreactor. Chemical Engineering Journal, 2013, 228, 1083-1091.	6.6	11
191	Structural Changes of Ultrathin Cub-PrO2(111)/Si(111) Films Due to Thermally Induced Oxygen Desorption. Journal of Physical Chemistry C, 2014, 118, 3056-3061.	1.5	11
192	XPS study of thermal and electron-induced decomposition of Ni and Co acetylacetonate thin films for metal deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, 041515.	0.9	11
193	What Changes on the Inverse Catalyst? Insights from CO Oxidation on Au-Supported Ceria Nanoparticles Using Ab Initio Molecular Dynamics. ACS Catalysis, 2020, 10, 3164-3174.	5.5	11
194	Doped samarium oxide xerogels for oxidative coupling of methane—Effects of high-valence dopants at very low concentrations. Catalysis Today, 2021, 365, 46-57.	2.2	11
195	Sol–Gel Preparation of Samaria Catalysts for the Oxidative Coupling of Methane. Catalysis Letters, 2015, 145, 1251-1261.	1.4	10
196	Design and Fabrication Challenges of a Highly Sensitive Thermoelectric-Based Hydrogen Gas Sensor. Micromachines, 2019, 10, 650.	1.4	10
197	Präaration und Charakterisierung eines bimetallischen Modellkatalysators: Co-Pd-Nanopartikel auf Al2O3. Angewandte Chemie, 2002, 114, 4242-4245.	1.6	9
198	Design of a UHV-compatible rf plasma source and its application to self-assembled layers of CoPt3 nanoparticles. Review of Scientific Instruments, 2006, 77, 083902.	0.6	9

#	Article	IF	CITATIONS
199	Ligand Exchange with Thiols: Effects on Composition and Morphology of Colloidal CoPt Nanoparticles. ChemPhysChem, 2008, 9, 821-825.	1.0	9
200	Foam, fleece and honeycomb: catalytically active coatings from colloidally prepared nanoparticles. Catalysis Science and Technology, 2011, 1, 830.	2.1	9
201	Characterization of a highly sensitive and selective hydrogen gas sensor employing Pt nanoparticle network catalysts based on different bifunctional ligands. Sensors and Actuators B: Chemical, 2020, 322, 128619.	4.0	9
202	Au deposits on graphite: On the nature of high temperature desorption peaks in CO thermal desorption spectra. Surface Science, 2006, 600, 3595-3599.	0.8	8
203	Chapter 1. Introduction to Nanoporous Gold. RSC Nanoscience and Nanotechnology, 2012, , 1-10.	0.2	8
204	Alumina-promoted cobalt and iron xerogels as catalyst for the Fischer–Tropsch synthesis. Catalysis Science and Technology, 2013, 3, 3256.	2.1	8
205	Controlled modification of nanoporous gold: Chemical vapor deposition of TiO2 in ultrahigh vacuum. Applied Surface Science, 2013, 282, 439-443.	3.1	8
206	Nanoporous gold functionalized with praseodymia–titania mixed oxides as a stable catalyst for the water–gas shift reaction. Physical Chemistry Chemical Physics, 2019, 21, 3278-3286.	1.3	8
207	Ligand-Linked Nanoparticles-Based Hydrogen Gas Sensor with Excellent Homogeneous Temperature Field and a Comparative Stability Evaluation of Different Ligand-Linked Catalysts. Sensors, 2019, 19, 1205.	2.1	8
208	Structure of oxygen-plasma-treated ultrathin praseodymia films on Si(111). Physical Review B, 2011, 83, .	1.1	7
209	CHAPTER 8. Surface Chemistry and Catalysis. RSC Nanoscience and Nanotechnology, 2012, , 167-198.	0.2	7
210	Self-diffusion of carbon dioxide in samaria/alumina aerogel catalyst using high field NMR diffusometry. Journal of Chemical Physics, 2013, 139, 154703.	1.2	7
211	PtxCo1â^'x alloy NPs prepared by colloidal tool-box synthesis: The effect of de-alloying on the oxygen reduction reaction activity. International Journal of Hydrogen Energy, 2014, 39, 9143-9148.	3.8	7
212	Investigation of the Growth Behaviour of Cobalt Thin Films from Chemical Vapour Deposition, Using Directly Coupled X-ray Photoelectron Spectroscopy. Zeitschrift Fur Physikalische Chemie, 2015, 229, 1887-1905.	1.4	7
213	Aerobic Methanol Oxidation over Unsupported Nanoporous Gold: The Influence of an Added Base. Catalysts, 2019, 9, 416.	1.6	7
214	Effects of low molar concentrations of low-valence dopants on samarium oxide xerogels in the oxidative coupling of methane. Catalysis Today, 2021, 365, 58-70.	2.2	7
215	Homogeneous Si films on CaF2/Si(111) due to boron enhanced solid phase epitaxy. Surface Science, 2006, 600, 3637-3641.	0.8	6
216	Sol–gel preparation of alumina stabilized rare earth areo- and xerogels and their use as oxidation catalysts. Journal of Colloid and Interface Science, 2014, 422, 71-78.	5.0	6

#	Article	IF	CITATIONS
217	CO Adsorption study of V/SiO2: the low vanadium coverage regime. Chemical Physics Letters, 2004, 392, 127-131.	1.2	5
218	Design of a compact ultrahigh vacuum-compatible setup for the analysis of chemical vapor deposition processes. Review of Scientific Instruments, 2014, 85, 104104.	0.6	5
219	Methanol Adsorption and Reaction on Samaria Thin Films on Pt(111). Materials, 2015, 8, 6228-6256.	1.3	5
220	Plasma modification of CoPt3 nanoparticle arrays: A route to catalytic coatings of surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 908-912.	0.9	4
221	Coatings of active and heat-resistant cobalt-aluminium xerogel catalysts. Journal of Colloid and Interface Science, 2016, 477, 64-73.	5.0	4
222	Synthesis and Characterization of Ligand‣inked Pt Nanoparticles: Tunable, Threeâ€Dimensional, Porous Networks for Catalytic Hydrogen Sensing. ChemistryOpen, 2021, 10, 697-712.	0.9	4
223	Thermal Activation of Nanoporous Gold for Carbon Monoxide Oxidation. Journal of Physical Chemistry C, 2022, 126, 1770-1777.	1.5	4
224	Chemistry of thin film formation and stability during praseodymium oxide deposition on Si(111) under oxygen-deficient conditions. Surface Science, 2010, 604, 1287-1293.	0.8	3
225	On the suppression of background signals originating from NMR hardware components. Application to zero echo time imaging and relaxation time analysis. Magnetic Resonance Imaging, 2016, 34, 264-270.	1.0	3
226	Highly Sensitive and Selective Hydrogen Gas Sensor with Platinum Nanoparticles Linked by 4,4"-Diamino-P-Terphenyl (Dater). , 2019, , .		3
227	On revealing the vertical structure of nanoparticle films with elemental resolution: A total external reflection X-ray standing waves study. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 325-328.	0.6	2
228	Transient Au–CO Complexes Promote the Activity of an Inverse Ceria/Gold Catalyst: An Insight from <i>Ab Initio</i> Molecular Dynamics. Journal of Physical Chemistry C, 2021, 125, 26406-26417.	1.5	2
229	Methodische Innovationen für die Chemielehre. Chemkon - Chemie Konkret, Forum Fuer Unterricht Und Didaktik, 2010, 17, 124-130.	0.2	1
230	A nanoparticles based catalytic gas sensor with improved stability. , 2012, , .		1
231	Study of Carbon Dioxide Transport in a Samaria Aerogel Catalyst by High Field Diffusion NMR. Chemie-Ingenieur-Technik, 2013, 85, 1749-1754.	0.4	1
232	CO and D2O chemistry on continuous and discontinuous samaria thin films on Pt(111). Surface Science, 2016, 650, 221-229.	0.8	1
233	Catalytic Micro Gas Sensor with Excellent Homogeneous Temperature Distribution and Low Power Consumption for Long-Term Stable Operation. Proceedings (mdpi), 2018, 2, .	0.2	1
234	Web Site: Shiny Surface, Shiny Contents. Angewandte Chemie - International Edition, 2002, 41, 3293-3293.	7.2	0

#	Article	IF	CITATIONS
235	Investigation of a Nanoporous Gold / TiO2 Catalyst by Electron Microscopy and Tomography. Materials Research Society Symposia Proceedings, 2013, 1504, 1.	0.1	0
236	Colloidally prepared platinum nanoparticles deposited on iron oxide studied by XAFS. Journal of Physics: Conference Series, 2013, 430, 012058.	0.3	0
237	Hans-Joachim Freund and Joachim Sauer Preface. Journal of Physical Chemistry C, 2019, 123, 7495-7498.	1.5	0