Andreas Möller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6519984/publications.pdf

Version: 2024-02-01

86 papers

15,169 citations

57631 44 h-index 83 g-index

86 all docs

86 docs citations

86 times ranked

23333 citing authors

#	Article	IF	CITATIONS
1	Donor bone marrow–derived macrophage MHC II drives neuroinflammation and altered behavior during chronic GVHD in mice. Blood, 2022, 139, 1389-1408.	0.6	14
2	Blood-Derived Extracellular Vesicle-Associated miR-3182 Detects Non-Small Cell Lung Cancer Patients. Cancers, 2022, 14, 257.	1.7	11
3	Tumor microenvironmental cytokines bound to cancer exosomes determine uptake by cytokine receptor-expressing cells and biodistribution. Nature Communications, 2021, 12, 3543.	5.8	69
4	Characterizing the Heterogeneity of Small Extracellular Vesicle Populations in Multiple Cancer Types <i>via</i> an Ultrasensitive Chip. ACS Sensors, 2021, 6, 3182-3194.	4.0	22
5	Chromatin interactome mapping at 139 independent breast cancer risk signals. Genome Biology, 2020, 21, 8.	3.8	27
6	CD155 on Tumor Cells Drives Resistance to Immunotherapy by Inducing the Degradation of the Activating Receptor CD226 in CD8+ TÂCells. Immunity, 2020, 53, 805-823.e15.	6.6	79
7	The oxytocin receptor signalling system and breast cancer: a critical review. Oncogene, 2020, 39, 5917-5932.	2.6	35
8	The evolving translational potential of small extracellular vesicles in cancer. Nature Reviews Cancer, 2020, 20, 697-709.	12.8	295
9	eQTL Colocalization Analyses Identify NTN4 as a Candidate Breast Cancer Risk Gene. American Journal of Human Genetics, 2020, 107, 778-787.	2.6	29
10	Tracking Drugâ€Induced Epithelial–Mesenchymal Transition in Breast Cancer by a Microfluidic Surfaceâ€Enhanced Raman Spectroscopy Immunoassay. Small, 2020, 16, e1905614.	5. 2	33
11	The Impact of the Cancer Microenvironment on Macrophage Phenotypes. Frontiers in Immunology, 2020, 11, 1308.	2.2	21
12	SIAH2-mediated and organ-specific restriction of HO-1 expression by a dual mechanism. Scientific Reports, 2020, 10, 2268.	1.6	17
13	The role of exosomes in the promotion of epithelial-to-mesenchymal transition and metastasis. Frontiers in Bioscience - Landmark, 2020, 25, 1022-1057.	3.0	10
14	NLRP3 negatively regulates Treg differentiation through Kpna2-mediated nuclear translocation. Journal of Biological Chemistry, 2019, 294, 17951-17961.	1.6	41
15	Breast Cancerâ€Derived Exosomes Reflect the Cellâ€ofâ€Origin Phenotype. Proteomics, 2019, 19, e1800180.	1.3	80
16	Visualization and quantification of <i>in vivo</i> homing kinetics of myeloid-derived suppressor cells in primary and metastatic cancer. Theranostics, 2019, 9, 5869-5885.	4.6	31
17	<scp>EGFR</scp> and Prion protein promote signaling via <scp>FOXO</scp> 3aâ€ <scp>KLF</scp> 5 resulting in clinical resistance to platinum agents in colorectal cancer. Molecular Oncology, 2019, 13, 725-737.	2.1	25
18	Secreted cellular prion protein binds doxorubicin and correlates with anthracycline resistance in breast cancer. JCI Insight, 2019, 5, .	2.3	21

#	Article	IF	Citations
19	Biological Functions and Current Advances in Isolation and Detection Strategies for Exosome Nanovesicles. Small, 2018, 14, 1702153.	5.2	335
20	Intermittent hypoxia induces a metastatic phenotype in breast cancer. Oncogene, 2018, 37, 4214-4225.	2.6	100
21	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
22	Summary of the ISEV workshop on extracellular vesicles as disease biomarkers, held in Birmingham, UK, during December 2017. Journal of Extracellular Vesicles, 2018, 7, 1473707.	5.5	60
23	Biodistribution of Cancer-Derived Exosomes. , 2018, , 175-186.		2
24	Tracking the fate of adoptively transferred myeloid-derived suppressor cells in the primary breast tumor microenvironment. PLoS ONE, 2018, 13, e0196040.	1.1	11
25	Breast Cancer-Derived Exosomes Alter Macrophage Polarization via gp130/STAT3 Signaling. Frontiers in Immunology, 2018, 9, 871.	2.2	133
26	Exosomes: Key mediators of metastasis and pre-metastatic niche formation. Seminars in Cell and Developmental Biology, 2017, 67, 3-10.	2.3	196
27	Unique molecular profile of exosomes derived from primary human proximal tubular epithelial cells under diseased conditions. Journal of Extracellular Vesicles, 2017, 6, 1314073.	5.5	33
28	Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance. International Journal of Cancer, 2017, 141, 614-620.	2.3	117
29	Myoepithelial cellâ€specific expression of stefin A as a suppressor of early breast cancer invasion. Journal of Pathology, 2017, 243, 496-509.	2.1	44
30	Size Exclusion Chromatography: A Simple and Reliable Method for Exosome Purification. Methods in Molecular Biology, 2017, 1660, 105-110.	0.4	37
31	Oncogenic transformation of lung cells results in distinct exosome protein profile similar to the cell of origin. Proteomics, 2017, 17, 1600432.	1.3	52
32	Long Noncoding RNAs CUPID1 and CUPID2 Mediate Breast Cancer Risk at 11q13 by Modulating the Response to DNA Damage. American Journal of Human Genetics, 2017, 101, 255-266.	2.6	77
33	An Electrochemical Method for the Detection of Diseaseâ€Specific Exosomes. ChemElectroChem, 2017, 4, 967-971.	1.7	71
34	RAD51 inhibition in triple negative breast cancer cells is challenged by compensatory survival signaling and requires rational combination therapy. Oncotarget, 2016, 7, 60087-60100.	0.8	19
35	Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nature Communications, 2016, 7, 10634.	5.8	232
36	The Biodistribution and Immune Suppressive Effects of Breast Cancer–Derived Exosomes. Cancer Research, 2016, 76, 6816-6827.	0.4	239

#	Article	IF	CITATIONS
37	Radiotherapy for Non–Small Cell Lung Cancer Induces DNA Damage Response in Both Irradiated and Out-of-field Normal Tissues. Clinical Cancer Research, 2016, 22, 4817-4826.	3.2	57
38	Optimized exosome isolation protocol for cell culture supernatant and human plasma. Journal of Extracellular Vesicles, 2015, 4, 27031.	5.5	1,204
39	The ubiquitin ligase Siah2 regulates obesity-induced adipose tissue inflammation. Obesity, 2015, 23, 2223-2232.	1.5	20
40	EVpedia: a community web portal for extracellular vesicles research. Bioinformatics, 2015, 31, 933-939.	1.8	317
41	Carbonic Anhydrase IX Promotes Myeloid-Derived Suppressor Cell Mobilization and Establishment of a Metastatic Niche by Stimulating G-CSF Production. Cancer Research, 2015, 75, 996-1008.	0.4	111
42	Loss of Host Type-I IFN Signaling Accelerates Metastasis and Impairs NK-cell Antitumor Function in Multiple Models of Breast Cancer. Cancer Immunology Research, 2015, 3, 1207-1217.	1.6	63
43	Toll-like receptor 3 regulates NK cell responses to cytokines and controls experimental metastasis. Oncolmmunology, 2015, 4, e1027468.	2.1	31
44	Loss of Siah2 does not impact angiogenic potential of murine endothelial cells. Microvascular Research, 2015, 102, 38-45.	1.1	0
45	Spleen Volume Variation in Patients with Locally Advanced Non-Small Cell Lung Cancer Receiving Platinum-Based Chemo-Radiotherapy. PLoS ONE, 2015, 10, e0142608.	1.1	20
46	The ubiquitin ligase Siah is a novel regulator of Zeb1 in breast cancer. Oncotarget, 2015, 6, 862-873.	0.8	53
47	Abstract B03: Hypoxia-induced carbonic anhydrase IX promotes MDSC recruitment and establishment of the breast cancer premetastatic niche by stimulating G-CSF production., 2015,,.		0
48	Type I <scp>NKT</scp> â€cellâ€mediated <scp>TNF</scp> â€Î± is a positive regulator of <scp>NLRP</scp> 3 inflammasome priming. European Journal of Immunology, 2014, 44, 2111-2120.	1.6	18
49	Effect of Platinum-Based Chemoradiotherapy on Cellular Proliferation in Bone Marrow and Spleen, Estimated by 18F-FLT PET/CT in Patients with Locally Advanced Non–Small Cell Lung Cancer. Journal of Nuclear Medicine, 2014, 55, 1075-1080.	2.8	23
50	Siah2 regulates tight junction integrity and cell polarity through control of ASPP2 stability. Oncogene, 2014, 33, 2004-2010.	2.6	22
51	The interaction between murine melanoma and the immune system reveals that prolonged responses predispose for autoimmunity. Oncolmmunology, 2013, 2, e23036.	2.1	12
52	Siah: A Promising Anticancer Target. Cancer Research, 2013, 73, 2400-2406.	0.4	50
53	A C-Terminal Acidic Domain Regulates Degradation of the Transcriptional Coactivator Bob1. Molecular and Cellular Biology, 2013, 33, 4628-4640.	1.1	8
54	The pre-metastatic niche: finding common ground. Cancer and Metastasis Reviews, 2013, 32, 449-464.	2.7	364

#	Article	IF	Citations
55	The role of Type I interferons in immunoregulation of breast cancer metastasis to the bone. Oncolmmunology, 2013, 2, e22339.	2.1	18
56	<scp>S</scp> iah2â€deficient mice show impaired skin wound repair. Wound Repair and Regeneration, 2013, 21, 437-447.	1.5	5
57	An Adipoinductive Role of Inflammation in Adipose Tissue Engineering: Key Factors in the Early Development of Engineered Soft Tissues. Stem Cells and Development, 2013, 22, 1602-1613.	1.1	51
58	Hypoxia-driven immunosuppression contributes to the pre-metastatic niche. Oncolmmunology, 2013, 2, e22355.	2.1	63
59	The Antioxidant N-Acetylcysteine Prevents HIF-1 Stabilization under Hypoxia In Vitro but Does Not Affect Tumorigenesis in Multiple Breast Cancer Models In Vivo. PLoS ONE, 2013, 8, e66388.	1.1	28
60	Primary Tumor Hypoxia Recruits CD11b+/Ly6Cmed/Ly6G+ Immune Suppressor Cells and Compromises NK Cell Cytotoxicity in the Premetastatic Niche. Cancer Research, 2012, 72, 3906-3911.	0.4	316
61	NLRP3 Suppresses NK Cell–Mediated Responses to Carcinogen-Induced Tumors and Metastases. Cancer Research, 2012, 72, 5721-5732.	0.4	159
62	Vascular Normalization by Loss of Siah2 Results in Increased Chemotherapeutic Efficacy. Cancer Research, 2012, 72, 1694-1704.	0.4	49
63	CD73-Deficient Mice Are Resistant to Carcinogenesis. Cancer Research, 2012, 72, 2190-2196.	0.4	178
64	NLRP3 promotes inflammationâ€induced skin cancer but is dispensable for asbestosâ€induced mesothelioma. Immunology and Cell Biology, 2012, 90, 983-986.	1.0	74
65	Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nature Medicine, 2012, 18, 1224-1231.	15.2	406
66	Inflammation and immune surveillance in cancer. Seminars in Cancer Biology, 2012, 22, 23-32.	4.3	179
67	The expression of the ubiquitin ligase SIAH2 (seven in absentia homolog 2) is mediated through gene copy number in breast cancer and is associated with a basal-like phenotype and p53 expression. Breast Cancer Research, 2011, 13, R19.	2.2	45
68	IL-23 suppresses innate immune response independently of IL-17A during carcinogenesis and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8328-8333.	3.3	116
69	High-Resolution Confocal Imaging in Tissue. Methods in Molecular Biology, 2010, 611, 183-191.	0.4	3
70	Immunohistochemical Detection of Tumour Hypoxia. Methods in Molecular Biology, 2010, 611, 151-159.	0.4	22
71	Siah Proteins: Novel Drug Targets in the Ras and Hypoxia Pathways. Cancer Research, 2009, 69, 8835-8838.	0.4	87
72	An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response. Nature Cell Biology, 2009, 11, 85-91.	4.6	129

#	Article	IF	Citations
73	Inhibition of Siah ubiquitin ligase function. Oncogene, 2009, 28, 289-296.	2.6	74
74	Primary tumour expression of the cysteine cathepsin inhibitor Stefin A inhibits distant metastasis in breast cancer. Journal of Pathology, 2008, 214, 337-346.	2.1	59
75	Siah Proteins Induce the Epidermal Growth Factor-dependent Degradation of Phospholipase Cϵ. Journal of Biological Chemistry, 2008, 283, 1034-1042.	1.6	16
76	Phosphorylation-Dependent Control of Pc2 SUMO E3 Ligase Activity by Its Substrate Protein HIPK2. Molecular Cell, 2006, 24, 77-89.	4.5	122
77	Elucidation of the Substrate Binding Site of Siah Ubiquitin Ligase. Structure, 2006, 14, 695-701.	1.6	69
78	Covalent modification of human homeodomain interacting protein kinase 2 by SUMO-1 at lysine 25 affects its stability. Biochemical and Biophysical Research Communications, 2005, 329, 1293-1299.	1.0	43
79	Sp100 is important for the stimulatory effect of homeodomain-interacting protein kinase-2 on p53-dependent gene expression. Oncogene, 2003, 22, 8731-8737.	2.6	38
80	Src Homology 2 Domain-Containing Leukocyte Phosphoprotein of 76 kDa and Phospholipase CÎ ³ 1 Are Required for NF-Î ⁹ B Activation and Lipid Raft Recruitment of Protein Kinase CÎ, Induced by T Cell Costimulation. Journal of Immunology, 2003, 170, 365-372.	0.4	35
81	PML is required for homeodomain-interacting protein kinase 2 (HIPK2)-mediated p53 phosphorylation and cell cycle arrest but is dispensable for the formation of HIPK domains. Cancer Research, 2003, 63, 4310-4.	0.4	110
82	Viruses as hijackers of PML nuclear bodies. Archivum Immunologiae Et Therapiae Experimentalis, 2003, 51, 295-300.	1.0	12
83	The Human Papillomavirus Oncoprotein E7 Attenuates NF-κB Activation by Targeting the ÎκB Kinase Complex. Journal of Biological Chemistry, 2002, 277, 25576-25582.	1.6	108
84	Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nature Cell Biology, 2002, 4, 1-10.	4.6	554
85	CD95-induced JNK activation signals are transmitted by the death-inducing signaling complex (DISC), but not by Daxx. International Journal of Cancer, 2001, 93, 185-191.	2.3	23
86	Protein Kinase C \hat{l} , Cooperates with Vav1 to Induce JNK Activity in T-cells. Journal of Biological Chemistry, 2001, 276, 20022-20028.	1.6	26