
Jean-Yves Maillard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6519633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review of decontamination protocols for shared non-critical objects in 35 policies of UK NHS acute care organizations. Journal of Hospital Infection, 2022, 120, 65-72.	2.9	3
2	Impact of material properties in determining quaternary ammonium compound adsorption and wipe product efficacy against biofilms. Journal of Hospital Infection, 2022, 126, 37-43.	2.9	5
3	Dual species dry surface biofilms; <i>Bacillus</i> species impact on <i>Staphylococcus aureus</i> survival and surface disinfection. Journal of Applied Microbiology, 2022, , .	3.1	4
4	Raman Microscopic Analysis of Dry-Surface Biofilms on Clinically Relevant Materials. Microorganisms, 2022, 10, 1369.	3.6	6
5	The role of melanin in Aspergillus tolerance to biocides and photosensitizers. Letters in Applied Microbiology, 2021, 72, 375-381.	2.2	1
6	TCF-ALP: a fluorescent probe for the selective detection of Staphylococcus bacteria and application in "smart―wound dressings. Biomaterials Science, 2021, 9, 4433-4439.	5.4	14
7	The Evaluation of Ester Functionalised TCFâ€Based Fluorescent Probes for the Detection of Bacterial Species. Israel Journal of Chemistry, 2021, 61, 234-238.	2.3	13
8	Is a reduction in viability enough to determine biofilm susceptibility to a biocide?. Infection Control and Hospital Epidemiology, 2021, 42, 1486-1492.	1.8	10
9	Ethylzingerone, a Novel Compound with Antifungal Activity. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	0
10	Electropositive Nanodiamond-Coated Quartz Microfiber Membranes for Virus and Dye Filtration. ACS Applied Nano Materials, 2021, 4, 3252-3261.	5.0	12
11	How dirty is your QWERTY? The risk of healthcare pathogen transmission from computer keyboards. Journal of Hospital Infection, 2021, 112, 31-36.	2.9	16
12	A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species. Nature Catalysis, 2021, 4, 575-585.	34.4	73
13	Dirty QWERTY: there's no ESC!. Journal of Hospital Infection, 2021, 117, 184-185.	2.9	1
14	Antimicrobial stewardship of antiseptics that are pertinent to wounds: the need for a united approach. JAC-Antimicrobial Resistance, 2021, 3, dlab027.	2.1	16
15	Emerging contaminants affect the microbiome of water systems—strategies for their mitigation. Npj Clean Water, 2020, 3, .	8.0	74
16	Dry heat and microwave-generated steam protocols for the rapid decontamination of respiratory personal protective equipment in response to COVID-19-related shortages. Journal of Hospital Infection, 2020, 106, 10-19.	2.9	48
17	Mapping the Efficacy and Mode of Action of Ethylzingerone [4-(3-Ethoxy-4-Hydroxyphenyl) Butan-2-One] as an Active Agent against <i>Burkholderia</i> Bacteria. Applied and Environmental Microbiology, 2020, 86, .	3.1	1
18	It's a trap! The development of a versatile drain biofilm model and its susceptibility to disinfection. Journal of Hospital Infection, 2020, 106, 757-764.	2.9	6

#	Article	IF	CITATIONS
19	Effect of Exposure to Chlorhexidine Residues at "During Use―Concentrations on Antimicrobial Susceptibility Profile, Efflux, Conjugative Plasmid Transfer, and Metabolism of Escherichia coli. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	3
20	Surface Wiping Test to Study Biocide -Cinnamaldehyde Combination to Improve Efficiency in Surface Disinfection. International Journal of Molecular Sciences, 2020, 21, 7852.	4.1	5
21	Impact of a dry inoculum deposition on the efficacy of copper-based antimicrobial surfaces. Journal of Hospital Infection, 2020, 106, 465-472.	2.9	13
22	Use of a smallâ€scale, portable test chamber for determining the bactericidal efficacy of aerosolized glycol formulations. Letters in Applied Microbiology, 2020, 70, 356-364.	2.2	3
23	Understanding the risk of emerging bacterial resistance to over the counter antibiotics in topical sore throat medicines. Journal of Applied Microbiology, 2020, 129, 916-925.	3.1	3
24	Reducing antibiotic prescribing and addressing the global problem of antibiotic resistance by targeted hygiene in the home and everyday life settings: A position paper. American Journal of Infection Control, 2020, 48, 1090-1099.	2.3	47
25	Hydroxyethoxy phenyl butanone, a new cosmetic preservative, does not cause bacterial cross-resistance to antimicrobials. Journal of Medical Microbiology, 2020, 69, 670-675.	1.8	5
26	Virucidal Action Mechanism of Alcohol and Divalent Cations Against Human Adenovirus. Frontiers in Molecular Biosciences, 2020, 7, 570914.	3.5	6
27	Evaluation of cinnamaldehyde and cinnamic acid derivatives in microbial growth control. International Biodeterioration and Biodegradation, 2019, 141, 71-78.	3.9	35
28	Combining detergent/disinfectant with microfibre material provides a better control of microbial contaminants on surfaces than the use of water alone. Journal of Hospital Infection, 2019, 103, e101-e104.	2.9	6
29	Long Wavelength TCF-Based Fluorescent Probe for the Detection of Alkaline Phosphatase in Live Cells. Frontiers in Chemistry, 2019, 7, 255.	3.6	30
30	Biofilm in healthcare settings and their control. Letters in Applied Microbiology, 2019, 68, 268-268.	2.2	3
31	Artificial dry surface biofilm models for testing the efficacy of cleaning and disinfection. Letters in Applied Microbiology, 2019, 68, 329-336.	2.2	21
32	Biocide Potentiation Using Cinnamic Phytochemicals and Derivatives. Molecules, 2019, 24, 3918.	3.8	11
33	Candida auris Dry Surface Biofilm (DSB) for Disinfectant Efficacy Testing. Materials, 2019, 12, 18.	2.9	47
34	Impact of test protocols and material binding on the efficacy of antimicrobial wipes. Journal of Hospital Infection, 2019, 103, e25-e32.	2.9	19
35	Enterococcus faecalis Demonstrates Pathogenicity through Increased Attachment in an <i>Ex Vivo</i> Polymicrobial Pulpal Infection. Infection and Immunity, 2018, 86, .	2.2	6
36	Resistance of Bacteria to Biocides. Microbiology Spectrum, 2018, 6, .	3.0	72

#	Article	IF	CITATIONS
37	Resistance of Bacteria to Biocides. , 2018, , 109-126.		2
38	Beware biofilm! Dry biofilms containing bacterial pathogens on multiple healthcare surfaces; a multi-centre study. Journal of Hospital Infection, 2018, 100, e47-e56.	2.9	99
39	Impact of antimicrobial wipes compared with hypochlorite solution on environmental surface contamination in a health care setting: A double-crossover study. American Journal of Infection Control, 2018, 46, 1180-1187.	2.3	15
40	Are amine-only-containing products sporicidal?. Journal of Hospital Infection, 2018, 99, 115-116.	2.9	1
41	Testing the Effectiveness of Disinfectants and Sanitizers. , 2016, , 569-586.		6
42	A Partially Purified Acinetobacter baumannii Phage Preparation Exhibits no Cytotoxicity in 3T3 Mouse Fibroblast Cells. Frontiers in Microbiology, 2016, 7, 1198.	3.5	18
43	Assessing the activity of microbicides against bacterial spores: knowledge and pitfalls. Journal of Applied Microbiology, 2016, 120, 1174-1180.	3.1	27
44	Impact of standard test protocols on sporicidal efficacy. Journal of Hospital Infection, 2016, 93, 256-262.	2.9	13
45	Comparison of the efficacy of natural-based and synthetic biocides to disinfect silicone and stainless steel surfaces. Pathogens and Disease, 2016, 74, ftw014.	2.0	15
46	Phytochemical profiling as a solution to palliate disinfectant limitations. Biofouling, 2016, 32, 1007-1016.	2.2	26
47	Use of a predictive protocol to measure the antimicrobial resistance risks associated with biocidal product usage. American Journal of Infection Control, 2016, 44, 458-464.	2.3	73
48	Mechanism of Sporicidal Activity for the Synergistic Combination of Peracetic Acid and Hydrogen Peroxide. Applied and Environmental Microbiology, 2016, 82, 1035-1039.	3.1	45
49	Missing a trick? Response to: â€~Disinfectant wipes are appropriate to control microbial bioburden from surfaces'. Journal of Hospital Infection, 2016, 92, 209-210.	2.9	1
50	Efflux pump induction by quaternary ammonium compounds and fluoroquinolone resistance in bacteria. Future Microbiology, 2016, 11, 81-92.	2.0	96
51	<i>Bacillus subtilis</i> vegetative isolate surviving chlorine dioxide exposure: an elusive mechanism of resistance. Journal of Applied Microbiology, 2015, 119, 1541-1551.	3.1	9
52	Pathogen transfer and high variability in pathogen removal by detergent wipes. American Journal of Infection Control, 2015, 43, 724-728.	2.3	54
53	Best practice in healthcare environment decontamination. European Journal of Clinical Microbiology and Infectious Diseases, 2015, 34, 1-11.	2.9	49
54	Development of a Protocol for Predicting Bacterial Resistance to Microbicides. Applied and Environmental Microbiology, 2015, 81, 2652-2659.	3.1	44

#	Article	IF	CITATIONS
55	Nanosilver: Safety, health and environmental effects and role in antimicrobial resistance. Materials Today, 2015, 18, 122-123.	14.2	74
56	Disinfectant wipes are appropriate to control microbial bioburden from surfaces: use of a new ASTM standard test protocol to demonstrate efficacy. Journal of Hospital Infection, 2015, 91, 319-325.	2.9	57
57	Development of a sporicidal test method for Clostridium difficile. Journal of Hospital Infection, 2015, 89, 2-15.	2.9	11
58	Resistance to and killing by the sporicidal microbicide peracetic acid. Journal of Antimicrobial Chemotherapy, 2015, 70, 773-779.	3.0	28
59	Stability and purity of a bacteriophage cocktail preparation for nebulizer delivery. Letters in Applied Microbiology, 2014, 58, 118-122.	2.2	41
60	Does Microbicide Use in Consumer Products Promote Antimicrobial Resistance? A Critical Review and Recommendations for a Cohesive Approach to Risk Assessment. Microbial Drug Resistance, 2013, 19, 344-354.	2.0	54
61	Development of an Ex Vivo Coculture System to Model Pulpal Infection by Streptococcus anginosus Group Bacteria. Journal of Endodontics, 2013, 39, 49-56.	3.1	9
62	The crucial role of wiping in decontamination of high-touch environmental surfaces: Review of current status and directions for the future. American Journal of Infection Control, 2013, 41, S97-S104.	2.3	74
63	A Preliminary Investigation into the Ability of Three Rapid Microbiological Methods To Detect Microorganisms in Hospital Intravenous Pharmaceuticals. PDA Journal of Pharmaceutical Science and Technology, 2013, 67, 376-386.	0.5	5
64	Silver as an antimicrobial: facts and gaps in knowledge. Critical Reviews in Microbiology, 2013, 39, 373-383.	6.1	283
65	Evaluation of new inÂvitro efficacy test for antimicrobial surface activity reflecting UK hospital conditions. Journal of Hospital Infection, 2013, 85, 274-281.	2.9	50
66	The effect of cationic microbicide exposure against <i>Burkholderia cepacia</i> complex (Bcc); the use of <i>Burkholderia lata</i> strain 383 as a model bacterium. Journal of Applied Microbiology, 2013, 115, 1117-1126.	3.1	39
67	Editorial - What is the significance and impact of a study?. Letters in Applied Microbiology, 2013, 57, 1-1.	2.2	1
68	Russell, Hugo & Ayliffe's. , 2013, , .		30
69	The role of surface disinfection in infection prevention. GMS Hygiene and Infection Control, 2013, 8, Doc10.	0.3	40
70	Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. Journal of Antimicrobial Chemotherapy, 2012, 67, 1589-1596.	3.0	418
71	Selection and use of disinfectants. In Practice, 2012, 34, 292-299.	0.2	12
72	Editorial -Letters in Applied Microbiology is changing!. Letters in Applied Microbiology, 2012, 55, 1-1.	2.2	2

#	Article	IF	CITATIONS
73	Mechanisms of Bacterial Resistance to Microbicides. , 2012, , 108-120.		4
74	Microbicides - The Double-Edged Sword: Environmental Toxicity and Emerging Resistance. , 2012, , 229-235.		1
75	Biofilms of a Bacillus subtilis Hospital Isolate Protect Staphylococcus aureus from Biocide Action. PLoS ONE, 2012, 7, e44506.	2.5	89
76	Bacterial spore structures and their protective role in biocide resistance. Journal of Applied Microbiology, 2012, 113, 485-498.	3.1	203
77	Efficacy of "sporicidal―wipes against Clostridium difficile. American Journal of Infection Control, 2011, 39, 212-218.	2.3	54
78	Low-level microbial contamination of liquid in syringe hubs leads to an unacceptable risk to the end product. Journal of Pharmacy and Pharmacology, 2011, 63, 164-168.	2.4	2
79	Rapid and quantitative automated measurement of bacteriophage activity against cystic fibrosis isolates of Pseudomonas aeruginosa. Journal of Applied Microbiology, 2011, 110, 631-640.	3.1	24
80	Evaluation of the bactericidal efficacy of three different alcohol hand rubs against clinical isolates of Staphylococcus aureus using an ex vivo carrier test. Journal of Hospital Infection, 2011, 77, 21-24.	2.9	5
81	Innate resistance to sporicides and potential failure to decontaminate. Journal of Hospital Infection, 2011, 77, 204-209.	2.9	61
82	Understanding the lethal effect of alcohol hand rubs: an in vitro study with Staphylococcus aureus isolates. Journal of Hospital Infection, 2010, 76, 264-266.	2.9	3
83	Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiology Reviews, 2010, 34, 231-259.	8.6	241
84	Effect of surfactants, temperature, and sonication on the virucidal activity of polyhexamethylene biguanide against the bacteriophage MS2. American Journal of Infection Control, 2010, 38, 393-398.	2.3	34
85	Mode of action of hydrogen peroxide and other oxidizing agents: differences between liquid and gas forms. Journal of Antimicrobial Chemotherapy, 2010, 65, 2108-2115.	3.0	257
86	Emergence of bacterial resistance to microbicides and antibiotics. Microbiology Australia, 2010, 31, 159.	0.4	9
87	Triclosan-tolerant bacteria: changes in susceptibility to antibiotics. Journal of Hospital Infection, 2009, 72, 71-76.	2.9	59
88	Use of sodium dichloroisocyanurate for floor disinfection. Journal of Hospital Infection, 2009, 72, 279-281.	2.9	10
89	Evaluation of the bactericidal efficacy of three different alcohol hand rubs against 57 clinical isolates of S. aureus. Journal of Hospital Infection, 2009, 72, 319-325.	2.9	21
90	Polyhexamethylene biguanide exposure leads to viral aggregation. Journal of Applied Microbiology, 2009, 108, 1880-8.	3.1	31

#	Article	IF	CITATIONS
91	Evaluation of the effectiveness of commercially available contact plates for monitoring microbial environments. Letters in Applied Microbiology, 2009, 48, 379-382.	2.2	16
92	Evaluation of alcohol wipes used during aseptic manufacturing. Letters in Applied Microbiology, 2009, 48, 648-651.	2.2	20
93	Control of microbial contamination of Franz diffusion cell receptor phase in the development of transcutaneous breast cancer therapeutics. Letters in Applied Microbiology, 2009, 49, 456-460.	2.2	6
94	Limitations of the Efficacy of Surface Disinfection in the Healthcare Setting. Infection Control and Hospital Epidemiology, 2009, 30, 570-573.	1.8	44
95	Resistance and cross-resistance to oxidising agents of bacterial isolates from endoscope washer disinfectors. Journal of Hospital Infection, 2008, 69, 377-383.	2.9	46
96	Response to: Price EH, Ayliffe C, †Hot hospitals and what happened to wash, rinse and dry? Recent changes to cleaning, disinfection and environmental ventilation'. Journal of Hospital Infection, 2008, 70, 376-378.	2.9	3
97	A simulated oral hygiene model to determine the efficacy of repeated exposure of amine oxide on the viability of Streptococcus mutans biofilms. European Journal of Oral Sciences, 2007, 115, 71-76.	1.5	5
98	Bacterial resistance to biocides in the healthcare environment: should it be of genuine concern?. Journal of Hospital Infection, 2007, 65, 60-72.	2.9	97
99	Corrigendum to â€~Bacterial resistance to biocides in the healthcare environment: should it be of genuine concern? [Journal of Hospital Infection 2007;65(Suppl 2):60–72]'. Journal of Hospital Infection, 2007, 67, 108.	2.9	1
100	The development of a new three-step protocol to determine the efficacy of disinfectant wipes on surfaces contaminated with Staphylococcus aureus. Journal of Hospital Infection, 2007, 67, 329-335.	2.9	47
101	Typing of Staphylococcus aureus clinical isolates using random amplification of polymorphic DNA method and comparison with antibiotic susceptibility typing. Journal of Hospital Infection, 2007, 67, 388-390.	2.9	4
102	Efficacy and Mycobactericidal Action of Aldehydes: Structure-Activity Relationship. ACS Symposium Series, 2007, , 162-181.	0.5	1
103	Chloroxylenol- and triclosan-tolerant bacteria from industrial sources—susceptibility to antibiotics and other biocides. International Biodeterioration and Biodegradation, 2006, 57, 51-56.	3.9	37
104	Use of a new alginate film test to study the bactericidal efficacy of the high-level disinfectant ortho-phthalaldehyde. Journal of Antimicrobial Chemotherapy, 2006, 57, 335-338.	3.0	7
105	Testing the effectiveness of disinfectants and sanitisers. , 2005, , 641-671.		4
106	Triclosan-bacteria interactions: single or multiple target sites?. Letters in Applied Microbiology, 2005, 41, 476-481.	2.2	89
107	Antimicrobial activity of chlorhexidine diacetate and benzalkonium chloride against Pseudomonas aeruginosa and its response to biocide residues. Journal of Applied Microbiology, 2005, 98, 533-543.	3.1	69
108	An investigation into the antimicrobial mechanisms of action of two contact lens biocides using electron microscopy. Contact Lens and Anterior Eye, 2005, 28, 163-168.	1.7	28

#	Article	IF	CITATIONS
109	Activity of amine oxide against biofilms of Streptococcus mutans: a potential biocide for oral care formulations. Journal of Antimicrobial Chemotherapy, 2005, 56, 672-677.	3.0	21
110	Triclosan inhibition of fatty acid synthesis and its effect on growth of Escherichia coli and Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 2005, 55, 879-882.	3.0	68
111	Biocide Use and Antibiotic Resistance. , 2005, , 465-489.		1
112	Airway function and reactivity, leukocyte influx and nitric oxide after inoculation with parainfluenza-3 virus: effects of dexamethasone or rolipram. International Immunopharmacology, 2005, 5, 771-782.	3.8	8
113	Antimicrobial biocides in the healthcare environment: efficacy, usage, policies, and perceived problems. Therapeutics and Clinical Risk Management, 2005, 1, 307-20.	2.0	72
114	Identification of genes involved in the susceptibility of Serratia marcescens to polyquaternium-1. Journal of Antimicrobial Chemotherapy, 2004, 54, 370-375.	3.0	7
115	Use of the 'ex vivo' test to study long-term bacterial survival on human skin and their sensitivity to antisepsis. Journal of Applied Microbiology, 2004, 97, 1149-1160.	3.1	19
116	Comparison of two in vivo and two ex vivo tests to assess the antibacterial activity of several antiseptics. Journal of Hospital Infection, 2004, 58, 115-121.	2.9	24
117	Assessment of skin viability: is it necessary to use different methodologies?. Skin Research and Technology, 2003, 9, 321-330.	1.6	35
118	Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria. Journal of Applied Microbiology, 2003, 94, 240-247.	3.1	406
119	Development of bacterial resistance to several biocides and effects on antibiotic susceptibility. Journal of Hospital Infection, 2003, 55, 98-107.	2.9	137
120	Aromatic alcohols and their effect on Gram-negative bacteria, cocci and mycobacteria. Journal of Antimicrobial Chemotherapy, 2003, 51, 1435-1436.	3.0	35
121	Effects of ortho-phthalaldehyde, glutaraldehyde and chlorhexidine diacetate on Mycobacterium chelonae and Mycobacterium abscessus strains with modified permeability. Journal of Antimicrobial Chemotherapy, 2003, 51, 575-584.	3.0	32
122	Aspects of the antimicrobial mechanisms of action of a polyquaternium and an amidoamine. Journal of Antimicrobial Chemotherapy, 2003, 51, 1153-1158.	3.0	104
123	Performance of Contact Lens Disinfecting Solutions Against Pseudomonas aeruginosa In the Presence of Organic Load. Eye and Contact Lens, 2003, 29, 100-102.	1.6	13
124	Cellular impermeability and uptake of biocides and antibiotics in Gram-negative bacteria. Journal of Applied Microbiology, 2002, 92, 35S-45S.	3.1	197
125	Antibiotic and Biocide Resistance in Bacteria: perceptions and realities for the prevention and treatment of infection. Journal of Applied Microbiology, 2002, 92, viiS-viiS.	3.1	5
126	Bacterial target sites for biocide action. Journal of Applied Microbiology, 2002, 92, 16S-27S.	3.1	315

#	Article	IF	CITATIONS
127	Chloroxylenol- and triclosan-tolerant bacteria from industrial sources. Journal of Industrial Microbiology and Biotechnology, 2002, 29, 238-242.	3.0	49
128	Chloroxylenol- and triclosan-tolerant bacteria from industrial sources. Journal of Industrial Microbiology and Biotechnology, 2002, 29, 238-242.	3.0	1
129	Bacterial target sites for biocide action. Journal of Applied Microbiology, 2002, 92 Suppl, 16S-27S.	3.1	64
130	Cellular impermeability and uptake of biocides and antibiotics in Gram-negative bacteria. Journal of Applied Microbiology, 2002, 92 Suppl, 35S-45S.	3.1	40
131	Comparison of the mycobactericidal activity of ortho- phthalaldehyde, glutaraldehyde and other dialdehydes by a quantitative suspension test. Journal of Hospital Infection, 2001, 48, 214-221.	2.9	55
132	Bacterial adaptation to biocides: the possible role of â€~alarmones'. Journal of Hospital Infection, 2001, 49, 300-302.	2.9	6
133	SYNTHESIS AND BIOLOGICAL EVALUATION OF PYRIDIN-2-ONE NUCLEOSIDES. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 731-733.	1.1	5
134	Virus susceptibility to biocides: an understanding. Reviews in Medical Microbiology, 2001, 12, 63-74.	0.9	30
135	Possible mechanisms for the relative efficacies of ortho-phthalaldehyde and glutaraldehyde against glutaraldehyde-resistant Mycobacterium chelonae. Journal of Applied Microbiology, 2001, 91, 80-92.	3.1	39
136	Determination of the antibacterial efficacy of several antiseptics tested on skin by an â€ex-vivo' test. Journal of Medical Microbiology, 2001, 50, 284-292.	1.8	57
137	A NOTE: Ortho-Phthalaldehyde: proposed mechanism of action of a new antimicrobial agent. Letters in Applied Microbiology, 2000, 31, 299-302.	2.2	47
138	Cytological changes in chlorhexidine-resistant isolates of Pseudomonas stutzeri. Journal of Antimicrobial Chemotherapy, 2000, 45, 145-152.	3.0	79
139	Development of resistance to chlorhexidine diacetate in Pseudomonas aeruginosa and the effect of a 'residual' concentration. Journal of Hospital Infection, 2000, 46, 297-303.	2.9	151
140	Outer membrane changes in Pseudomonas stutzeri resistant to chlorhexidine diacetate and cetylpyridinium chloride. International Journal of Antimicrobial Agents, 2000, 16, 233-238.	2.5	72
141	Orthoâ€phthalaldehyde: a possible alternative to glutaraldehyde for high level disinfection. Journal of Applied Microbiology, 1999, 86, 1039-1046.	3.1	119
142	Comparative responses of Pseudomonas stutzeri and Pseudomonas aeruginosa to antibacterial agents. Journal of Applied Microbiology, 1999, 87, 323-331.	3.1	19
143	Studies on the mechanisms of the antibacterial action of ortho-phthalaldehyde. Journal of Applied Microbiology, 1999, 87, 702-710.	3.1	47
144	Effect of biocides commonly used in the hospital environment on the transfer of antibiotic-resistance genes inStaphylococcus aureus. Journal of Hospital Infection, 1999, 43, 101-107.	2.9	32

#	Article	IF	CITATIONS
145	Development of resistance to chlorhexidine diacetate and cetylpyridinium chloride in Pseudomonas stutzeri and changes in antibiotic susceptibility. Journal of Hospital Infection, 1999, 42, 219-229.	2.9	149
146	Do antiseptics and disinfectants select for antibiotic resistance?. Journal of Medical Microbiology, 1999, 48, 613-615.	1.8	35
147	Efficacy and mechanisms of action of sodium hypochlorite on Pseudomonas aeruginosa PAO1 phage F116. Journal of Applied Microbiology, 1998, 85, 925-932.	3.1	15
148	Resistance ofPseudomonas aeruginosaPAO1 phage F116 to sodium hypochlorite. Journal of Applied Microbiology, 1998, 85, 799-806.	3.1	10
149	Antimicrobial efficacy of biocides tested on skin using an ex-vivo test. Journal of Hospital Infection, 1998, 40, 313-323.	2.9	28
150	Possible Link between Bacterial Resistance and Use of Antibiotics and Biocides. Antimicrobial Agents and Chemotherapy, 1998, 42, 2151-2151.	3.2	125
151	Opinion. Letters in Applied Microbiology, 1996, 23, 273-274.	2.2	7
152	The effect of biocides on proteins of <i>Pseudomonas aeruginosa</i> PAO bacteriophage F116. Journal of Applied Bacteriology, 1996, 80, 291-295.	1.1	24
153	Damage to <i>Pseudomonas aeruginosa</i> PAO1 bacteriophage F116 DNA by biocides. Journal of Applied Bacteriology, 1996, 80, 540-544.	1.1	31
154	The use of an automated assay to assess phage survival after a biocidal treatment. Journal of Applied Bacteriology, 1996, 80, 605-610.	1.1	6
155	Electronmicroscopic investigation of the effects of biocides on Pseudomonas aeruginosa PAO bacteriophage F116. Journal of Medical Microbiology, 1995, 42, 415-420.	1.8	31
156	Energy dispersive analysis of X-rays study of the distribution of chlorhexidine diacetate and cetylpyridinium chloride on the Pseudomonas aeruginosa bacteriophage F116. Letters in Applied Microbiology, 1995, 20, 357-360.	2.2	9
157	Effects of biocides on the transduction of Pseudomonas aeruginosa PAO by F116 bacteriophage. Letters in Applied Microbiology, 1995, 21, 215-218.	2.2	12
158	Effect of Biocides on MS2 and K Coliphages. Applied and Environmental Microbiology, 1994, 60, 2205-2206.	3.1	30
159	Effect of biocides on Pseudomonas aeruginosa phage F116. Letters in Applied Microbiology, 1993, 17, 167-170.	2.2	23
160	Good Manufacturing Practice. , 0, , 622-640.		1
161	Bacterial Resistance. , 0, , 154-168.		3
162	Factors Influencing the Efficacy of Antimicrobial Agents. , 0, , 98-127.		16

Factors Influencing the Efficacy of Antimicrobial Agents. , 0, , 98-127. 162

#	Article	IF	CITATIONS
163	Mechanisms of Action of Biocides. , 0, , 139-153.		8
164	Preservation of Medicines and Cosmetics. , 0, , 484-513.		0
165	Types of Antimicrobial Agents. , 0, , 8-97.		17
166	Evaluation of Antimicrobial Efficacy. , 0, , 345-360.		4
167	Factors Affecting the Activities of Microbicides. , 0, , 71-86.		3
168	Virucidal Activity of Microbicides. , 0, , 178-207.		8
169	Special Problems in Hospital Antisepsis. , 0, , 540-562.		3
170	Other Health-Related Issues. , 0, , 604-613.		1
171	Other Health-Related Issues. , 0, , 614-621.		1
172	Biofilms and Antimicrobial Resistance. , 0, , 128-138.		4
173	Bacterial Resistance. , 0, , 170-183.		5
174	Bacterial Resistance. , 0, , 154-204.		2
175	Bacterial Resistance. , 0, , 191-204.		1
176	Viricidal Activity of Biocides. , 0, , 272-323.		5
177	Transmissible Degenerative Encephalopathies: Inactivation of the Unconventional Causal Agents. , 0, , 324-342.		3
178	New and Emerging Technologies. , 0, , 473-483.		0
179	Reuse of Single-Use Devices. , 0, , 514-525.		0

#	Article	IF	CITATIONS
181	Decontamination of the Environment and Medical Equipment in Hospitals. , 0, , 563-585.		0
182	Treatment of Laundry and Clinical Waste in Hospitals. , 0, , 586-594.		0
183	Other Health-Related Issues. , 0, , 595-621.		0
184	Antifungal Activity of Disinfectants. , 0, , 205-219.		0
185	Antifungal Activity of Disinfectants. , 0, , 220-240.		0
186	Sensitivity of Protozoa to Disinfectants. , 0, , 241-257.		1
187	Sensitivity of Protozoa to Disinfectants. , 0, , 258-271.		0