Michele Ciccarelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6519381/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Post-COVID-19 Syndrome: Involvement and Interactions between Respiratory, Cardiovascular and Nervous Systems. Journal of Clinical Medicine, 2022, 11, 524.	2.4	73
2	A Novel Combination of High-Load Omega-3 Lysine Complex (AvailOm®) and Anthocyanins Exerts Beneficial Cardiovascular Effects. Antioxidants, 2022, 11, 896.	5.1	5
3	The role of anti-hypertensive treatment, comorbidities and early introduction of LMWH in the setting of COVID-19: A retrospective, observational study in Northern Italy. International Journal of Cardiology, 2021, 324, 249-254.	1.7	21
4	Macrophage expression and prognostic significance of the long pentraxin PTX3 in COVID-19. Nature Immunology, 2021, 22, 19-24.	14.5	101
5	Vasculitis changes in COVID-19 survivors with persistent symptoms: an [18F]FDG-PET/CT study. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 1460-1466.	6.4	106
6	The Metabolic Role of GRK2 in Insulin Resistance and Associated Conditions. Cells, 2021, 10, 167.	4.1	14
7	The Role of Oxidative Stress in Cardiovascular Aging and Cardiovascular Diseases. Life, 2021, 11, 60.	2.4	60
8	A Novel Vasoactive Peptide "PG1―from Buffalo Ice-Cream Protects from Angiotensin-Evoked High Blood Pressure. Antioxidants, 2021, 10, 441.	5.1	5
9	Exercise Training and Cardiac Rehabilitation in COVID-19 Patients with Cardiovascular Complications: State of Art. Life, 2021, 11, 259.	2.4	25
10	Long COVID hallmarks on [18F]FDG-PET/CT: a case-control study. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3187-3197.	6.4	106
11	Bronchoalveolar lavage in suspected COVID-19 cases with a negative nasopharyngeal swab: a retrospective cross-sectional study in a high-impact Northern Italy area. Internal and Emergency Medicine, 2021, 16, 1857-1864.	2.0	22
12	Impact of active cancer on COVID-19 survival: a matched-analysis on 557 consecutive patients at an Academic Hospital in Lombardy, Italy. British Journal of Cancer, 2021, 125, 358-365.	6.4	21
13	Vitamin D: Not Just Bone Metabolism but a Key Player in Cardiovascular Diseases. Life, 2021, 11, 452.	2.4	22
14	Short-term health-related quality of life, physical function and psychological consequences of severe COVID-19. Annals of Intensive Care, 2021, 11, 91.	4.6	41
15	Healthberry 865® and Its Related, Specific, Single Anthocyanins Exert a Direct Vascular Action, Modulating Both Endothelial Function and Oxidative Stress. Antioxidants, 2021, 10, 1191.	5.1	5
16	The Role of Glycemic Variability in Cardiovascular Disorders. International Journal of Molecular Sciences, 2021, 22, 8393.	4.1	21
17	Reciprocal organ interactions during heart failure: a position paper from the ESC Working Group on Myocardial Function. Cardiovascular Research, 2021, 117, 2416-2433.	3.8	27
18	Artificial Intelligence as a Business Partner in Cardiovascular Precision Medicine: An Emerging Approach for Disease Detection and Treatment Optimization. Current Medicinal Chemistry, 2021, 28, 6569-6590.	2.4	19

MICHELE CICCARELLI

#	Article	IF	CITATIONS
19	Biomarkers Predict In-Hospital Major Adverse Cardiac Events in COVID-19 Patients: A Multicenter International Study. Journal of Clinical Medicine, 2021, 10, 5863.	2.4	9
20	It is easy to see, but it is better to foresee: a case report on the favourable alliance between CardioMEMS and levosimendan. European Heart Journal - Case Reports, 2020, 4, 1-5.	0.6	8
21	Precision and Personalized Medicine: How Genomic Approach Improves the Management of Cardiovascular and Neurodegenerative Disease. Genes, 2020, 11, 747.	2.4	44
22	Cardiac dysfunction in cancer patients: beyond direct cardiomyocyte damage of anticancer drugs: novel cardio-oncology insights from the joint 2019 meeting of the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovascular Research, 2020, 116, 1820-1834.	3.8	51
23	A Novel Promising Frontier for Human Health: The Beneficial Effects of Nutraceuticals in Cardiovascular Diseases. International Journal of Molecular Sciences, 2020, 21, 8706.	4.1	32
24	Sirt1 Activity in PBMCs as a Biomarker of Different Heart Failure Phenotypes. Biomolecules, 2020, 10, 1590.	4.0	7
25	Exploiting GRK2 Inhibition as a Therapeutic Option in Experimental Cancer Treatment: Role of p53-Induced Mitochondrial Apoptosis. Cancers, 2020, 12, 3530.	3.7	6
26	Low Incidence of SARS-CoV-2 in Patients with Solid Tumours on Active Treatment: An Observational Study at a Tertiary Cancer Centre in Lombardy, Italy. Cancers, 2020, 12, 2352.	3.7	26
27	Pharmacological inhibition of <scp>GRK2</scp> improves cardiac metabolism and function in experimental heart failure. ESC Heart Failure, 2020, 7, 1571-1584.	3.1	21
28	Early Predictors of Clinical Deterioration in a Cohort of 239 Patients Hospitalized for Covid-19 Infection in Lombardy, Italy. Journal of Clinical Medicine, 2020, 9, 1548.	2.4	147
29	CaMKII Activity in the Inflammatory Response of Cardiac Diseases. International Journal of Molecular Sciences, 2019, 20, 4374.	4.1	50
30	The novel butyrate derivative phenylalanineâ€butyramide protects from doxorubicinâ€induced cardiotoxicity. European Journal of Heart Failure, 2019, 21, 519-528.	7.1	80
31	Cross-Talk between Neurohormonal Pathways and the Immune System in Heart Failure: A Review of the Literature. International Journal of Molecular Sciences, 2019, 20, 1698.	4.1	38
32	Antidiabetic and Cardioprotective Effects of Pharmacological Inhibition of GRK2 in db/db Mice. International Journal of Molecular Sciences, 2019, 20, 1492.	4.1	22
33	We are What We Eat: Impact of Food from Short Supply Chain on Metabolic Syndrome. Journal of Clinical Medicine, 2019, 8, 2061.	2.4	47
34	Cardiac eccentric remodeling in patients with rheumatoid arthritis. Scientific Reports, 2018, 8, 5867.	3.3	10
35	The innate immune system in chronic cardiomyopathy: a European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC. European Journal of Heart Failure, 2018, 20, 445-459.	7.1	118
36	Vitamin D, parathyroid hormone and cardiovascular risk. Journal of Cardiovascular Medicine, 2018, 19, 62-66.	1.5	18

MICHELE CICCARELLI

#	Article	IF	CITATIONS
37	GRK2 moderates the acute mitochondrial damage to ionizing radiation exposure by promoting mitochondrial fission/fusion. Cell Death Discovery, 2018, 4, 25.	4.7	32
38	Parathyroid Hormone Causes Endothelial Dysfunction by Inducing Mitochondrial ROS and Specific Oxidative Signal Transduction Modifications. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-18.	4.0	32
39	A Novel Small Peptide Inhibitor of NFκB, RH10, Blocks Oxidative Stress-Dependent Phenotypes in Cancer. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-9.	4.0	4
40	Complex roads from genotype to phenotype in dilated cardiomyopathy: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovascular Research, 2018, 114, 1287-1303.	3.8	91
41	Predictors of left ventricular reverse remodeling in patients with chronic heart failure. Journal of Cardiovascular Medicine, 2018, 19, 465-469.	1.5	7
42	Diazoxide Improves Mitochondrial Connexin 43 Expression in a Mouse Model of Doxorubicin-Induced Cardiotoxicity. International Journal of Molecular Sciences, 2018, 19, 757.	4.1	22
43	The Amino-Terminal Domain of GRK5 Inhibits Cardiac Hypertrophy through the Regulation of Calcium-Calmodulin Dependent Transcription Factors. International Journal of Molecular Sciences, 2018, 19, 861.	4.1	17
44	Difficult-to-control hypertension: identification of clinical predictors and use of ICT-based integrated care to facilitate blood pressure control. Journal of Human Hypertension, 2018, 32, 467-476.	2.2	22
45	Cellular subtype expression and activation of CaMKII regulate the fate of atherosclerotic plaque. Atherosclerosis, 2017, 256, 53-61.	0.8	16
46	Mechanistic Role of Kinases in the Regulation of Mitochondrial Fitness. Advances in Experimental Medicine and Biology, 2017, 982, 521-528.	1.6	9
47	Post-cardiac injury syndrome: an atypical case following percutaneous coronary intervention. American Journal of Emergency Medicine, 2017, 35, 1985.e1-1985.e2.	1.6	7
48	Association Study Between Coronary Artery Disease and rs1333049 Polymorphism at 9p21.3 Locus in Italian Population. Journal of Cardiovascular Translational Research, 2017, 10, 455-458.	2.4	7
49	Cardiotoxic Effects of Short-Term Doxorubicin Administration: Involvement of Connexin 43 in Calcium Impairment. International Journal of Molecular Sciences, 2017, 18, 2121.	4.1	32
50	Functional Role of Mitochondria in Arrhythmogenesis. Advances in Experimental Medicine and Biology, 2017, 982, 191-202.	1.6	46
51	Tackling Cardiovascular Risk: New Evidence from Personalized Medicine. Current Pharmacogenomics and Personalized Medicine, 2017, 15, .	0.2	Ο
52	"Freeze, Don't Move― How to Arrest a Suspect in Heart Failure – A Review on Available GRK2 Inhibitors. Frontiers in Cardiovascular Medicine, 2016, 3, 48.	2.4	21
53	Inflammatory mediators in a short-time mouse model of doxorubicin-induced cardiotoxicity. Toxicology and Applied Pharmacology, 2016, 293, 44-52.	2.8	94
54	Integrating GRK2 and NFkappaB in the Pathophysiology of Cardiac Hypertrophy. Journal of Cardiovascular Translational Research, 2015, 8, 493-502.	2.4	46

MICHELE CICCARELLI

#	Article	IF	CITATIONS
55	Dermcidin: a skeletal muscle myokine modulating cardiomyocyte survival and infarct size after coronary artery ligation. Cardiovascular Research, 2015, 107, 431-441.	3.8	27
56	Targeting the CaMKII/ERK Interaction in the Heart Prevents Cardiac Hypertrophy. PLoS ONE, 2015, 10, e0130477.	2.5	52
57	CaMKII protects MKP-1 from proteasome degradation in endothelial cells. Cellular Signalling, 2014, 26, 2167-2174.	3.6	8
58	G Protein–Coupled Receptor Kinase 2. Circulation Research, 2014, 114, 1661-1670.	4.5	77
59	Endothelial G Protein–Coupled Receptor Kinase 2 Regulates Vascular Homeostasis Through the Control of Free Radical Oxygen Species. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2415-2424.	2.4	31
60	Adrenergic receptors and metabolism: role in development of cardiovascular disease. Frontiers in Physiology, 2013, 4, 265.	2.8	57
61	Physical activity ameliorates cardiovascular health in elderly subjects: the functional role of the β adrenergic system. Frontiers in Physiology, 2013, 4, 209.	2.8	68
62	β ₂ -Adrenergic Receptor Stimulation Improves Endothelial Progenitor Cell–Mediated Ischemic Neoangiogenesis. Circulation Research, 2013, 112, 1026-1034.	4.5	60
63	Myocardial Ablation of G Protein–Coupled Receptor Kinase 2 (GRK2) Decreases Ischemia/Reperfusion Injury through an Anti-Intrinsic Apoptotic Pathway. PLoS ONE, 2013, 8, e66234.	2.5	52
64	GRK2 at the Control Shaft of Cellular Metabolism. Current Pharmaceutical Design, 2012, 18, 121-127.	1.9	17
65	AAV6-βARKct gene delivery mediated by molecular cardiac surgery with recirculating delivery (MCARD) in sheep results in robust gene expression and increased adrenergic reserve. Journal of Thoracic and Cardiovascular Surgery, 2012, 143, 720-726.e3.	0.8	30
66	Growth inhibition of human hepatocellular carcinoma cells by overexpression of Gâ€proteinâ€coupled receptor kinase 2. Journal of Cellular Physiology, 2012, 227, 2371-2377.	4.1	19
67	Impaired neoangiogenesis in β ₂ –adrenoceptor geneâ€deficient mice: restoration by intravascular human β ₂ –adrenoceptor gene transfer and role of NFκB and CREB transcription factors. British Journal of Pharmacology, 2011, 162, 712-721.	5.4	47
68	G Protein-Coupled Receptor Kinase 2 in Patients With Acute Myocardial Infarction. American Journal of Cardiology, 2011, 107, 1125-1130.	1.6	73
69	G Protein–Coupled Receptor Kinase 2 Activity Impairs Cardiac Glucose Uptake and Promotes Insulin Resistance After Myocardial Ischemia. Circulation, 2011, 123, 1953-1962.	1.6	155
70	In vivo properties of the proangiogenic peptide QK. Journal of Translational Medicine, 2009, 7, 41.	4.4	101
71	Enhanced GRK2 Expression and Desensitization of βAR Vasodilatation in Hypertensive Patients. Clinical and Translational Science, 2008, 1, 215-220.	3.1	65
72	Exercise promotes angiogenesis and improves β-adrenergic receptor signalling in the post-ischaemic failing rat heart. Cardiovascular Research, 2008, 78, 385-394.	3.8	116

#	Article	IF	CITATIONS
73	The G-protein-coupled receptor kinase 5 inhibits NFκB transcriptional activity by inducing nuclear accumulation of IκBα. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17818-17823.	7.1	107
74	Endothelial β2 adrenergic signaling to AKT: Role of Gi and SRC. Cellular Signalling, 2007, 19, 1949-1955.	3.6	54
75	Ischemic Neoangiogenesis Enhanced by β ₂ -Adrenergic Receptor Overexpression. Circulation Research, 2005, 97, 1182-1189.	4.5	154
76	AKT Participates in Endothelial Dysfunction in Hypertension. Circulation, 2004, 109, 2587-2593.	1.6	89
77	β2-Adrenergic Receptor Gene Delivery to the Endothelium Corrects Impaired Adrenergic Vasorelaxation in Hypertension. Circulation, 2002, 106, 349-355.	1.6	73
78	β-Adrenoceptors in cardiovascular and respiratory diseases. , 0, , 287-320.		0