
Anna Cargnoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6519232/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracellular Vesicles From Perinatal Cells for Anti-inflammatory Therapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 637737.	2.0	15
2	The Role of B Cells in PE Pathophysiology: A Potential Target for Perinatal Cell-Based Therapy?. International Journal of Molecular Sciences, 2021, 22, 3405.	1.8	6
3	CM from intact hAM: an easily obtained product with relevant implications for translation in regenerative medicine. Stem Cell Research and Therapy, 2021, 12, 540.	2.4	15
4	Autophagy: a potential key contributor to the therapeutic action of mesenchymal stem cells. Autophagy, 2020, 16, 28-37.	4.3	96
5	Amniotic MSCs reduce pulmonary fibrosis by hampering lung B-cell recruitment, retention, and maturation. Stem Cells Translational Medicine, 2020, 9, 1023-1035.	1.6	41
6	The Multifaceted Roles of MSCs in the Tumor Microenvironment: Interactions With Immune Cells and Exploitation for Therapy. Frontiers in Cell and Developmental Biology, 2020, 8, 447.	1.8	27
7	Perinatal Cells: A Promising COVID-19 Therapy?. Frontiers in Bioengineering and Biotechnology, 2020, 8, 619980.	2.0	3
8	Perinatal Mesenchymal Stromal Cells and Their Possible Contribution to Fetal-Maternal Tolerance. Cells, 2019, 8, 1401.	1.8	19
9	Effect of human amniotic epithelial cells on proâ€fibrogenic resident hepatic cells in a rat model of liver fibrosis. Journal of Cellular and Molecular Medicine, 2018, 22, 1202-1213.	1.6	28
10	The Immunomodulatory Properties of Amniotic Cells. Cell Transplantation, 2018, 27, 31-44.	1.2	85
11	Epithelial and Mesenchymal Stromal Cells From the Amniotic Membrane. , 2018, , 147-155.		1
12	The dichotomy of placenta-derived cells in cancer growth. Placenta, 2017, 59, 154-162.	0.7	15
13	Is Immune Modulation the Mechanism Underlying the Beneficial Effects of Amniotic Cells and Their Derivatives in Regenerative Medicine?. Cell Transplantation, 2017, 26, 531-539.	1.2	66
14	Antifibrotic Effects of Human Amniotic Membrane Transplantation in Established Biliary Fibrosis Induced in Rats. Cell Transplantation, 2016, 25, 2245-2257.	1.2	33
15	The Long Path of Human Placenta, and Its Derivatives, in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2015, 3, 162.	2.0	122
16	Stem Properties of Amniotic Membrane-Derived Cells. , 2015, , 57-76.		0
17	Target-antigen Detection and Localization of Human Amniotic-derived Cells after in Utero Transplantation in Rats. Annals of Clinical and Laboratory Science, 2015, 45, 270-7.	0.2	2
18	Conditioned medium from amniotic membrane-derived cells prevents lung fibrosis and preserves blood gas exchanges in bleomycin-injured mice—specificity of the effects and insights into possible mechanisms. Cytotherapy, 2014, 16, 17-32.	0.3	60

#	Article	IF	CITATIONS
19	Anti-fibrotic effects of fresh and cryopreserved human amniotic membrane in a rat liver fibrosis model. Cell and Tissue Banking, 2013, 14, 475-488.	0.5	82
20	Conditioned medium from amniotic mesenchymal tissue cells reduces progression of bleomycin-induced lung fibrosis. Cytotherapy, 2012, 14, 153-161.	0.3	88
21	Amniotic Membrane Application Reduces Liver Fibrosis in a Bile Duct Ligation Rat Model. Cell Transplantation, 2011, 20, 441-453.	1.2	80
22	Heart rate reduction with ivabradine improves energy metabolism and mechanical function of isolated ischaemic rabbit heart. Cardiovascular Research, 2009, 84, 72-82.	1.8	42
23	Transplantation of Allogeneic and Xenogeneic Placenta-Derived Cells Reduces Bleomycin-Induced Lung Fibrosis. Cell Transplantation, 2009, 18, 405-422.	1.2	225
24	Amniotic Membrane Patching Promotes Ischemic Rat Heart Repair. Cell Transplantation, 2009, 18, 1147-1159.	1.2	86
25	Therapeutic modulation of the nitric oxide: all ace inhibitors are not equivalent. Pharmacological Research, 2007, 56, 42-48.	3.1	42
26	Percutaneous coronary injection of bone marrow cells in small experimental animals: Small is not too small. Pathology Research and Practice, 2007, 203, 801-808.	1.0	1
27	Anti-ischaemic effect of ivabradine. Pharmacological Research, 2006, 53, 435-439.	3.1	36
28	Experimental ischemic cardiomyopathy: insights into remodeling, physiological adaptation, and humoral response. Annals of Clinical and Laboratory Science, 2006, 36, 333-40.	0.2	9
29	Title is missing!. European Heart Journal Supplements, 2004, 6, F22-F29.	0.0	11
30	Oxidative Stress During Myocardial Ischaemia and Heart Failure. Current Pharmaceutical Design, 2004, 10, 1699-1711.	0.9	186
31	Skeletal muscle abnormalities in rats with experimentally induced heart hypertrophy and failure. Basic Research in Cardiology, 2003, 98, 114-123.	2.5	11
32	Preliminary observations on the effects of acute infusion of growth hormone on coronary vasculature and on myocardial function and energetics of an isolated and blood-perfused heart. Journal of Endocrinological Investigation, 2003, 26, RC1-RC4.	1.8	4
33	Oxidative stress in cardiovascular disease: myth or fact?. Archives of Biochemistry and Biophysics, 2003, 420, 217-221.	1.4	143
34	Cellular Thiols Redox Status: a Switch for NF-κB Activation During Myocardial Post-ischaemic Reperfusion. Journal of Molecular and Cellular Cardiology, 2002, 34, 997-1005.	0.9	30
35	Studies on the cardiovascular activities of growth hormone. Journal of Molecular and Cellular Cardiology, 2002, 34, A15.	0.9	0
36	Revascularization of hibernating myocardium. Rate of metabolic and functional recovery and occurrence of oxidative stress. European Heart Journal, 2002, 23, 1877-1885.	1.0	11

#	Article	IF	CITATIONS
37	A Sample-Saving Preparation to Extract DNA-Binding Proteins from Cardiac and Vascular Tissues. Laboratory Investigation, 2002, 82, 667-669.	1.7	О
38	Ace-Inhibition with Quinapril Modulates the Nitric Oxide Pathway in Normotensive Rats. Journal of Molecular and Cellular Cardiology, 2001, 33, 395-403.	0.9	39
39	β-Adrenergic receptors and intracellular signalling pathway in stunned and non-ischemic regions of pig myocardium. Basic Research in Cardiology, 2001, 96, 388-394.	2.5	2
40	Role of bradykinin and eNOS in the anti-ischaemic effect of trandolapril. British Journal of Pharmacology, 2001, 133, 145-153.	2.7	17
41	New insights on myocardial pyridine nucleotides and thiol redox state in ischemia and reperfusion damage. Cardiovascular Research, 2000, 47, 586-594.	1.8	54
42	Reduction of oxidative stress by carvedilol: role in maintenance of ischaemic myocardium viability. Cardiovascular Research, 2000, 47, 556-566.	1.8	32
43	Changes in oxidative stress and cellular redox potential during myocardial storage for transplantation: experimental studies. Journal of Heart and Lung Transplantation, 1999, 18, 478-487.	0.3	19
44	Role of A2A Receptor in the Modulation of Myocardial Reperfusion Damage. Journal of Cardiovascular Pharmacology, 1999, 33, 883-893.	0.8	47
45	Effects of chronic noradrenaline on the nitric oxide pathway in human endothelial cells. Basic Research in Cardiology, 1998, 93, 250-256.	2.5	9
46	Effects of Lercanidipine on Fe2+-Induced Mitochondrial Lipid Peroxidation. Journal of Cardiovascular Pharmacology, 1997, 29, S63-S72.	0.8	2
47	Dichotomy in the Post-ischemic Metabolic and Functional Recovery Profiles of Isolated Blood- versus Buffer-perfused Heart. Journal of Molecular and Cellular Cardiology, 1996, 28, 531-539.	0.9	14
48	ls Stunning an Important Component of Preconditioning?. Journal of Molecular and Cellular Cardiology, 1996, 28, 2323-2331.	0.9	7
49	Heat Shock Protein Changes in Hibernation: a Similarity with Heart Failure?. Journal of Molecular and Cellular Cardiology, 1996, 28, 2383-2395.	0.9	15
50	Effects of felodipine on the ischemic heart: Insight into the mechanism of cytoprotection. Cardiovascular Drugs and Therapy, 1996, 10, 425-437.	1.3	9
51	Relation between energy metabolism, glycolysis, noradrenaline release and duration of ischemia. Molecular and Cellular Biochemistry, 1996, 160-161, 187-194.	1.4	13
52	Metabolic Adaptation During a Sequence of No-Flow and Low-Flow Ischemia. Circulation, 1996, 94, 2587-2596.	1.6	66
53	In vitro administration of ergothioneine failed to protect isolated ischaemic and reperfused rabbit heart. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1995, 1270, 173-178.	1.8	6
54	Intermittent v continuous ischernia decelerates adenylate breakdown and prevents norepinephrine release in reperfused rabbit heart. Journal of Molecular and Cellular Cardiology, 1995, 27, 659-671.	0.9	22

#	Article	IF	CITATIONS
55	Extraction and Assay of Creatine Phosphate, Purine, and Pyridine Nucleotides in Cardiac Tissue by Reversed-Phase High-Performance Liquid Chromatography. Analytical Biochemistry, 1994, 222, 374-379.	1.1	56
56	Effect of Angiotensin Converting Enzyme Inhibition with Quinaprilat on the Ischaemic and Reperfused Myocardium. Journal of Molecular and Cellular Cardiology, 1994, 26, 69-86.	0.9	22
57	Lipid Peroxidation in Normal Pregnancy and Preeclampsia. Advances in Experimental Medicine and Biology, 1994, 366, 420-421.	0.8	9
58	Evidence Against Malondialdehyde Bound to Cellular Constituents in Phospholipid Peroxidation. Advances in Experimental Medicine and Biology, 1994, 366, 404-406.	0.8	0
59	In Vitro Ergothioneine Administration Failed to Protect Isolated Ischaemic and Reperfused Rabbit Heart. Advances in Experimental Medicine and Biology, 1994, 366, 448-449.	0.8	Ο
60	Effect of lacidipine on ischaemic and reperfused isolated rabbit hearts. Molecular and Cellular Biochemistry, 1993, 125, 73-86.	1.4	9
61	Cardioprotection by nisoldipine: role of timing of administration. European Heart Journal, 1993, 14, 1258-1272.	1.0	43
62	Protection of the Ischemic Myocardium by the Converting-Enzyme Inhibitor Zofenopril: Insight Into Its Mechanism of Action. Journal of Cardiovascular Pharmacology, 1992, 20, 694-704.	0.8	2
63	Effect of prolonged treatment with propionyl-L-carnitine on erucic acid-induced myocardial dysfunction in rats. Journal of Molecular and Cellular Cardiology, 1992, 24, 250.	0.9	0
64	The protective role of heat stress in the ischaemic and reperfused rabbit myocardium. Journal of Molecular and Cellular Cardiology, 1992, 24, 895-907.	0.9	176
65	PEG-SOD and myocardial antioxidant status during ischaemia and reperfusion: Dose-response studies in the isolated blood perfused rabbit heart. Journal of Molecular and Cellular Cardiology, 1992, 24, 1021-1030.	0.9	19
66	PEG-SOD improves postischemic functional recovery and antioxidant status in blood-perfused rabbit hearts. American Journal of Physiology - Heart and Circulatory Physiology, 1992, 263, H1243-H1249.	1.5	8
67	Lipid peroxidation during myocardial reperfusion. Molecular and Cellular Biochemistry, 1992, 111, 49-54.	1.4	9
68	Occurrence of oxidative stress during myocardial reperfusion. Molecular and Cellular Biochemistry, 1992, 111, 61-69.	1.4	64
69	Role of timing of administration in the cardioprotective effect of fructose-1,6-bisphosphate. Cardiovascular Drugs and Therapy, 1992, 6, 209-217.	1.3	9
70	Oxygen free radicals and myocardial damage: Protective role of thiol-containing agents. American Journal of Medicine, 1991, 91, S95-S105.	0.6	201
71	Role of timing of administration in the cardioprotective effect of iloprost, a stable prostacyclln mimetic. European Journal of Pharmacology, 1991, 199, 165-178.	1.7	5
72	Role of oxygen free radicals in ischemic and reperfused myocardium. American Journal of Clinical Nutrition, 1991, 53, 215S-222S.	2.2	75

#	Article	IF	CITATIONS
73	Evaluation of phospholipid peroxidation as malondialdehyde during myocardial ischemia and reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 1991, 260, H1057-H1061.	1.5	44
74	The occurrence of oxidative stress during reperfusion in experimental animals and men. Cardiovascular Drugs and Therapy, 1991, 5, 277-287.	1.3	43
75	The effect of propionyl-L-carnitine on the ischemic and reperfused intact myocardium and on their derived mitochondria. Cardiovascular Drugs and Therapy, 1991, 5, 57-65.	1.3	24
76	Time course of human atrial natriuretic factor release during cardiopulmonary bypass in mitral valve and coronary artery diseased patients. European Journal of Cardio-thoracic Surgery, 1991, 5, 205-210.	0.6	11
77	Effects of anipamil on myocardial sarcolemmal and mitochondrial calcium transport, comparison with verapamil and nifedipine. European Journal of Pharmacology, 1990, 189, 149-161.	2.7	5
78	Occurrence of oxidative stress during reperfusion of the human heart Circulation, 1990, 81, 201-211.	1.6	280
79	Effect of D-600 on ischemic and reperfused rabbit myocardium: relation with timing and modality of administration. Basic Research in Cardiology, 1989, 84, 606-622.	2.5	31
80	No evidence of oxygen free radicals-mediated damage during the calcium paradox. Basic Research in Cardiology, 1989, 84, 396-403.	2.5	5
81	Effects of iloprost (ZK 36374) on glutathione status during ischaemia and reperfusion of rabbit isolated hearts. British Journal of Pharmacology, 1989, 98, 678-684.	2.7	32
82	Effect of L-Carnitine derivatives on heart mitochondrial damage induced by lipid peroxidation. Pharmacological Research Communications, 1988, 20, 125-132.	0.2	33
83	The role of glutathione status in the protection against ischaemic and reperfusion damage: Effects of N-acetyl cysteine. Journal of Molecular and Cellular Cardiology, 1988, 20, 5-13.	0.9	160
84	Metabolic changes during post-ischaemic reperfusion. Journal of Molecular and Cellular Cardiology, 1988, 20, 119-133.	0.9	59
85	Protective effect of a prostacyclin-mimetic on the ischaemic-reperfused rabbit myocardium. Journal of Molecular and Cellular Cardiology, 1988, 20, 1095-1106.	0.9	26
86	Long-Lasting Protective Effect of Anipamil, a New Calcium Entry Blocker, against Myocardial Ischemia and Reperfusion Damage. Annals of the New York Academy of Sciences, 1988, 522, 522-524.	1.8	1
87	Mechanism of myocardial protective action of dilazep during ischaemia and reperfusion. Pharmacological Research Communications, 1987, 19, 341-357.	0.2	5
88	Oxygen free radicals and reperfusion injury; the effect of ischaemia and reperfusion on the cellular ability to neutralise oxygen toxicity. Journal of Molecular and Cellular Cardiology, 1986, 18, 67-69.	0.9	43