
## **Christian Zeeden**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6519193/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A decomposition approach to cyclostratigraphic signal processing. Earth-Science Reviews, 2022, 225, 103894.                                                                                                              | 9.1  | 2         |
| 2  | Borehole logging and seismic data from Lake Ohrid (North Macedonia/Albania) as a basis for age-depth<br>modelling over the last one million years. Quaternary Science Reviews, 2022, 276, 107295.                        | 3.0  | 13        |
| 3  | Decoding geochemical signals of the Schwalbenberg Loess-Palaeosol-Sequences — A key to Upper<br>Pleistocene ecosystem responses to climate changes in western Central Europe. Catena, 2022, 212,<br>106076.              | 5.0  | 6         |
| 4  | Half-precession signals in Lake Ohrid (Balkan) and their spatio-temporal relations to climate records from the European realm. Quaternary Science Reviews, 2022, 280, 107413.                                            | 3.0  | 9         |
| 5  | Environmental reconstruction potentials of Loess-Paleosol-Sequences in Kashmir through<br>high-resolution proxy data. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 601, 111100.                              | 2.3  | 3         |
| 6  | Millennial-scale terrestrial ecosystem responses to Upper Pleistocene climatic changes:<br>4D-reconstruction of the Schwalbenberg Loess-Palaeosol-Sequence (Middle Rhine Valley, Germany).<br>Catena, 2021, 196, 104913. | 5.0  | 26        |
| 7  | Chronological Assessment of the Balta Alba Kurgan Loess-Paleosol Section (Romania) – A Comparative<br>Study on Different Dating Methods for a Robust and Precise Age Model. Frontiers in Earth Science,<br>2021, 8, .    | 1.8  | 16        |
| 8  | Magnetic Susceptibility Properties of Loess From the Willendorf Archaeological Site: Implications for the Syn/Post-Depositional Interpretation of Magnetic Fabric. Frontiers in Earth Science, 2021, 8, .                | 1.8  | 8         |
| 9  | The Early Upper Paleolithic Site Crvenka-At, Serbia–The First Aurignacian Lowland Occupation Site in the Southern Carpathian Basin. Frontiers in Earth Science, 2021, 9, .                                               | 1.8  | 8         |
| 10 | A chronological and palaeoenvironmental reâ€evaluation of two loessâ€palaeosol records in the<br>northern Harz foreland, Germany, based on innovative modelling tools. Boreas, 2021, 50, 746-763.                        | 2.4  | 10        |
| 11 | Cyclostratigraphy and paleoenvironmental inference from downhole logging of sediments in tropical<br>Lake Towuti, Indonesia. Journal of Paleolimnology, 2021, 65, 377-392.                                               | 1.6  | 7         |
| 12 | Loess landscapes of Europe – Mapping, geomorphology, and zonal differentiation. Earth-Science<br>Reviews, 2021, 215, 103496.                                                                                             | 9.1  | 104       |
| 13 | Sedimentology of a Late Quaternary lacustrine record from the southâ€eastern Carpathian Basin.<br>Journal of Quaternary Science, 2021, 36, 1414-1425.                                                                    | 2.1  | 5         |
| 14 | A Detailed Paleoclimate Proxy Record for the Middle Danube Basin Over the Last 430 kyr: A Rock<br>Magnetic and Colorimetric Study of the Zemun Loess-Paleosol Sequence. Frontiers in Earth Science,<br>2021, 9, .        | 1.8  | 16        |
| 15 | Organic carbon burial is paced by a ~173-ka obliquity cycle in the middle to high latitudes. Science<br>Advances, 2021, 7, .                                                                                             | 10.3 | 51        |
| 16 | Insolation-paced sea level and sediment flux during the early Pleistocene in Southeast Asia. Scientific<br>Reports, 2021, 11, 16707.                                                                                     | 3.3  | 7         |
| 17 | Local mineral dust transported by varying wind intensities forms the main substrate for loess in<br>Kashmir. E&G Quaternary Science Journal, 2021, 70, 191-195.                                                          | 0.7  | 5         |
| 18 | High-resolution palaeoenvironmental reconstruction at Zmajevac (Croatia) over the last three<br>glacial/interglacial cycles. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 576, 110504.                       | 2.3  | 10        |

| #  | Article                                                                                                                                                                                                                                                                                                                                              | IF                       | CITATIONS    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------|
| 19 | Reply to the discussion paper by P. Sümegi and S. Gulyás: Some notes on the interpretation and reliability of malacological proxies in paleotemperature reconstructions from loess- comments to Obreht et al.'s "A critical reevaluation of paleoclimate proxy records from loess in the Carpathian Basin― Earth-Science Reviews, 2021, 220, 103737. | 9.1                      | 1            |
| 20 | Geomorphological evolution of the Petrovaradin Fortress Palaeolithic site (Novi Sad, Serbia).<br>Quaternary Research, 2021, 103, 21-34.                                                                                                                                                                                                              | 1.7                      | 6            |
| 21 | New chronology and extended palaeoenvironmental data to the 1975 loess profile of Madaras brickyard, South Hungary. Journal of Quaternary Science, 2021, 36, 1364-1381.                                                                                                                                                                              | 2.1                      | 3            |
| 22 | The Chronostratigraphy of the Aurignacian in the Northern Carpathian Basin Based on New<br>Chronometric/Archeological Data from SeÅ^a I (Eastern Slovakia). Journal of Paleolithic Archaeology,<br>2020, 3, 77-96.                                                                                                                                   | 1.7                      | 2            |
| 23 | Initial quartz OSL and dust mass accumulation rate investigation of the Kisiljevo loess sequence in north-eastern Serbia. Quaternary International, 2020, , .                                                                                                                                                                                        | 1.5                      | 5            |
| 24 | Paleoclimate records reveal elusive ~200-kyr eccentricity cycle for the first time. Global and Planetary Change, 2020, 194, 103296.                                                                                                                                                                                                                  | 3.5                      | 18           |
| 25 | A postâ€ <scp>IR IRSL</scp> chronology and dust mass accumulation rates of the Nosak loessâ€palaeosol sequence in northeastern Serbia. Boreas, 2020, 49, 841-857.                                                                                                                                                                                    | 2.4                      | 16           |
| 26 | Rock Magnetic Cyclostratigraphy of Permian Loess in Eastern Equatorial Pangea (Salagou Formation,) Tj ETQq0 (                                                                                                                                                                                                                                        | 0 0 <sub>1</sub> rgBT /C | verlock 10 1 |
| 27 | Lithological correction of chemical weathering proxies based on K, Rb, and Mg contents for isolation of orbital signals in clastic sedimentary archives. Sedimentary Geology, 2020, 406, 105717.                                                                                                                                                     | 2.1                      | 7            |
| 28 | Loess-Palaeosol Sequences in the Kashmir Valley, NW Himalayas: A Review. Frontiers in Earth Science, 2020, 8, .                                                                                                                                                                                                                                      | 1.8                      | 21           |
| 29 | Smoothed millennial-scale palaeoclimatic reference data as unconventional comparison targets:<br>Application to European loess records. Scientific Reports, 2020, 10, 5455.                                                                                                                                                                          | 3.3                      | 8            |
| 30 | A late Pliocene to early Pleistocene (3.3–2.1 Ma) orbital chronology for the Qaidam Basin paleolake (NE) Tj ETC                                                                                                                                                                                                                                      | QqQ 0 0 rg               | BT_/Overlock |
| 31 | Editorial: <i>E&amp;G Quaternary Science Journal</i> – a community-based open-access journal.<br>E&G Quaternary Science Journal, 2020, 68, 243-244.                                                                                                                                                                                                  | 0.7                      | 0            |
| 32 | Extending the tephra and palaeoenvironmental record of the Central Mediterranean back to 430 ka: A<br>new core from Fucino Basin, central Italy. Quaternary Science Reviews, 2019, 225, 106003.                                                                                                                                                      | 3.0                      | 32           |
| 33 | The Cyclostratigraphy Intercomparison Project (CIP): consistency, merits and pitfalls. Earth-Science Reviews, 2019, 199, 102965.                                                                                                                                                                                                                     | 9.1                      | 37           |
| 34 | A critical reevaluation of palaeoclimate proxy records from loess in the Carpathian Basin.<br>Earth-Science Reviews, 2019, 190, 498-520.                                                                                                                                                                                                             | 9.1                      | 65           |
| 35 | A multiproxy study of past environmental changes in the Sea of Okhotsk during the last 1.5†Ma.<br>Organic Geochemistry, 2019, 132, 50-61.                                                                                                                                                                                                            | 1.8                      | 14           |

<sup>36</sup>Time scale evaluation and the quantification of obliquity forcing. Quaternary Science Reviews, 2019,<br/>209, 100-113.3.019

| #  | ARTICLE                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 07 | Orbital forcing and abrupt events in a continental weathering proxy from central Europe (Most) Tj ETQq1 1 0.78                                                                                                                              |     |           |
| 37 | Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 514, 423-440.                                                                                                                                                                      | 2.3 | 3         |
| 38 | Late Quaternary environments in the Gobi Desert of Mongolia: Vegetation, hydrological, and palaeoclimate evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 514, 77-91.                                                    | 2.3 | 19        |
| 39 | Landscape instability at the end of MIS 3 in western Central Europe: evidence from a multi proxy study<br>on a Loess-Palaeosol-Sequence from the eastern Lower Rhine Embayment, Germany. Quaternary<br>International, 2019, 502, 119-136.   | 1.5 | 17        |
| 40 | Quartz OSL dating of late quaternary Chinese and Serbian loess: A cross Eurasian comparison of dust mass accumulation rates. Quaternary International, 2019, 502, 30-44.                                                                    | 1.5 | 44        |
| 41 | High-resolution paleoclimatic proxy data from the MIS3/2 transition recorded in northeastern<br>Hungarian loess. Quaternary International, 2019, 502, 95-107.                                                                               | 1.5 | 21        |
| 42 | Precession and atmospheric CO2 modulated variability of sea ice in the central Okhotsk Sea since 130,000 years ago. Earth and Planetary Science Letters, 2018, 488, 36-45.                                                                  | 4.4 | 23        |
| 43 | Oceanic heat pulses fueling moisture transport towards continental Europe across the mid-Pleistocene transition. Quaternary Science Reviews, 2018, 179, 48-58.                                                                              | 3.0 | 21        |
| 44 | Patterns and timing of loess-paleosol transitions in Eurasia: Constraints for paleoclimate studies.<br>Global and Planetary Change, 2018, 162, 1-7.                                                                                         | 3.5 | 35        |
| 45 | Loess correlations – Between myth and reality. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509, 4-23.                                                                                                                          | 2.3 | 31        |
| 46 | The Crvenka loess-paleosol sequence: A record of continuous grassland domination in the southern<br>Carpathian Basin during the Late Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology,<br>2018, 509, 33-46.                   | 2.3 | 38        |
| 47 | Millennial scale climate oscillations recorded in the Lower Danube loess over the last glacial period.<br>Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509, 164-181.                                                            | 2.3 | 48        |
| 48 | Early Upper Paleolithic surface collections from loess-like sediments in the northern Carpathian<br>Basin. Quaternary International, 2018, 485, 167-182.                                                                                    | 1.5 | 9         |
| 49 | OSL chronologies of paleoenvironmental dynamics recorded by loess-paleosol sequences from<br>Europe: Case studies from the Rhine-Meuse area and the Neckar Basin. Palaeogeography,<br>Palaeoclimatology, Palaeoecology, 2018, 509, 105-125. | 2.3 | 22        |
| 50 | The Aurignacian way of life: Contextualizing early modern human adaptation in the Carpathian Basin.<br>Quaternary International, 2018, 485, 150-166.                                                                                        | 1.5 | 27        |
| 51 | North Atlantic influence on Holocene flooding in the southern Greater Caucasus. Holocene, 2018, 28, 609-620.                                                                                                                                | 1.7 | 8         |
| 52 | Discriminating luminescence age uncertainty composition for a robust Bayesian modelling.<br>Quaternary Geochronology, 2018, 43, 30-39.                                                                                                      | 1.4 | 26        |
| 53 | Reply to "The Gravettian and the Epigravettian chronology in eastern central Europe: A comment on<br>BA¶sken et al. 2017― Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 506, 270-271.                                            | 2.3 | 2         |
| 54 | Reconstruction of Late Pleistocene paleoenvironments in southern Germany using two<br>high-resolution loess-paleosol records. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018,<br>509, 58-76.                                       | 2.3 | 10        |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Prevailing surface winds in Northern Serbia in the recent and past time periods; modern- and past dust deposition. Aeolian Research, 2018, 31, 117-129.                                                                                          | 2.7 | 42        |
| 56 | Investigating the last glacial Gravettian site â€~Ságvár Lyukas Hill' (Hungary) and its paleoenvironmental<br>and geochronological context using a multi-proxy approach. Palaeogeography, Palaeoclimatology,<br>Palaeoecology, 2018, 509, 77-90. | 2.3 | 19        |
| 57 | Short-term soil formation events in last glacial east European loess, evidence from multi-method<br>luminescence dating. Quaternary Science Reviews, 2018, 200, 34-51.                                                                           | 3.0 | 34        |
| 58 | Integrated stratigraphy of ODP Site 1115 (Solomon Sea, southwestern equatorial Pacific) over the past<br>3.2†Ma. Marine Micropaleontology, 2018, 144, 25-37.                                                                                     | 1.2 | 10        |
| 59 | Loess distribution and related Quaternary sediments in the Carpathian Basin. Journal of Maps, 2018, 14, 661-670.                                                                                                                                 | 2.0 | 29        |
| 60 | Approaches and challenges to the study of loess—Introduction to the LoessFest Special Issue.<br>Quaternary Research, 2018, 89, 563-618.                                                                                                          | 1.7 | 92        |
| 61 | Monsoonal Forcing of European Iceâ€ <b>6</b> heet Dynamics During the Late Quaternary. Geophysical Research<br>Letters, 2018, 45, 7066-7074.                                                                                                     | 4.0 | 17        |
| 62 | Taner filter settings and automatic correlation optimisation for cyclostratigraphic studies.<br>Computers and Geosciences, 2018, 119, 18-28.                                                                                                     | 4.2 | 19        |
| 63 | Digital image analysis of outcropping sediments: Comparison to photospectrometric data from<br>Quaternary loess deposits at Şanoviţa (Romania) and Achenheim (France). Quaternary International,<br>2017, 429, 100-107.                          | 1.5 | 25        |
| 64 | Spatial loess distribution in the eastern Carpathian Basin: a novel approach based on geoscientific maps and data. Journal of Maps, 2017, 13, 173-181.                                                                                           | 2.0 | 20        |
| 65 | Milankovitch cycles in an equatorial delta from the Miocene of Borneo. Earth and Planetary Science<br>Letters, 2017, 472, 229-240.                                                                                                               | 4.4 | 11        |
| 66 | Mediterranean Outflow Water dynamics during the past ~570Âkyr: Regional and global implications.<br>Paleoceanography, 2017, 32, 634-647.                                                                                                         | 3.0 | 23        |
| 67 | Geochemical imprints of coupled paleoenvironmental and provenance change in the lacustrine<br>sequence of Orog Nuur, Gobi Desert of Mongolia. Journal of Paleolimnology, 2017, 58, 511-532.                                                      | 1.6 | 19        |
| 68 | Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for Modern<br>Human dispersal. Scientific Reports, 2017, 7, 5848.                                                                                        | 3.3 | 86        |
| 69 | New luminescence-based geochronology framing the last two glacial cycles at the southern limit of<br>European Pleistocene loess in Stalać (Serbia). Geochronometria, 2017, 44, 150-161.                                                          | 0.8 | 20        |
| 70 | The Eltville Tephra (Western Europe) age revised: Integrating stratigraphic and dating information<br>from different Last Glacial loess localities. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017,<br>466, 240-251.                    | 2.3 | 19        |
| 71 | REPRODUCIBILITY IN CYCLOSTRATIGRAPHY: INITIATING AN INTERCOMPARISON PROJECT. , 2017, , .                                                                                                                                                         |     | 1         |
| 72 | Tracing the influence of Mediterranean climate on Southeastern Europe during the past 350,000 years.<br>Scientific Reports, 2016, 6, 36334.                                                                                                      | 3.3 | 80        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Three climatic cycles recorded in a loess-palaeosol sequence at Semlac (Romania) – Implications for<br>dust accumulation in south-eastern Europe. Quaternary Science Reviews, 2016, 154, 130-142.                               | 3.0 | 65        |
| 74 | A Multi-Proxy Analysis of two Loess-Paleosol Sequences in the Northern Harz Foreland, Germany.<br>Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 461, 401-417.                                                        | 2.3 | 41        |
| 75 | Demographic estimates of hunter–gatherers during the Last Glacial Maximum in Europe against the background of palaeoenvironmental data. Quaternary International, 2016, 425, 49-61.                                             | 1.5 | 55        |
| 76 | Discriminating sediment archives and sedimentary processes in the arid endorheic Ejina Basin, NW<br>China using a robust geochemical approach. Journal of Asian Earth Sciences, 2016, 119, 128-144.                             | 2.3 | 9         |
| 77 | Aeolian dynamics at the Orlovat loess–paleosol sequence, northern Serbia, based on detailed textural and geochemical evidence. Aeolian Research, 2015, 18, 69-81.                                                               | 2.7 | 56        |
| 78 | Loess magnetic fabric of the Krems-Wachtberg archaeological site. Quaternary International, 2015,<br>372, 188-194.                                                                                                              | 1.5 | 23        |
| 79 | Stratigraphic continuity and fragmentary sedimentation: the success of cyclostratigraphy as part of integrated stratigraphy. Geological Society Special Publication, 2015, 404, 157-197.                                        | 1.3 | 66        |
| 80 | Testing astronomically tuned age models. Paleoceanography, 2015, 30, 369-383.                                                                                                                                                   | 3.0 | 54        |
| 81 | Sediment color as a tool in cyclostratigraphy – a new application for improved data acquisition and correction from drill cores. Newsletters on Stratigraphy, 2015, 48, 277-285.                                                | 1.2 | 7         |
| 82 | Low-latitude climate variability in the Heinrich frequency band of the Late Cretaceous greenhouse world. Climate of the Past, 2014, 10, 1001-1015.                                                                              | 3.4 | 11        |
| 83 | The Miocene astronomical time scale 9-12 Ma: New constraints on tidal dissipation and their<br>implications for paleoclimatic investigations. Paleoceanography, 2014, 29, 296-307.                                              | 3.0 | 33        |
| 84 | An astronomical age for the Bishop Tuff and concordance with radioisotopic dates. Geophysical<br>Research Letters, 2014, 41, 3478-3484.                                                                                         | 4.0 | 20        |
| 85 | Comment on Colleoni et al. (2012): Integrated stratigraphy and pitfalls of automated tuning. Earth and Planetary Science Letters, 2014, 387, 22-24.                                                                             | 4.4 | 2         |
| 86 | Revised Miocene splice, astronomical tuning and calcareous plankton biochronology of ODP Site 926<br>between 5 and 14.4Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 369, 430-451.                               | 2.3 | 53        |
| 87 | A refined astronomically calibrated 40Ar/39Ar age for Fish Canyon sanidine. Earth and Planetary<br>Science Letters, 2011, 311, 420-426.                                                                                         | 4.4 | 124       |
| 88 | Loess stratigraphy using palaeomagnetism: Application to the Poiana CireÅŸului archaeological site<br>(Romania). Quaternary International, 2011, 240, 100-107.                                                                  | 1.5 | 17        |
| 89 | Depressions on the Titel loess plateau: Form, pattern, genesis. Geographica Pannonica, 2007, , 4-8.                                                                                                                             | 1.3 | 18        |
| 90 | Palaeoecological background of the Upper Palaeolithic site of SÃigvÃir, Hungary: radiocarbonâ€dated<br>malacological and sedimentological studies on the Late Pleistocene environment. Journal of<br>Quaternary Science, 0, , . | 2.1 | 3         |