Gopalan Muralidharan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6519161/publications.pdf Version: 2024-02-01

		81839	95218
117	5,127	39	68
papers	citations	h-index	g-index
117 all docs	117 docs citations	117 times ranked	5447 citing authors

#	Article	IF	CITATIONS
1	The binder-free mesoporous CoNi2S4 electrode for high-performance symmetric and asymmetric supercapacitor devices. Journal of Materials Science, 2022, 57, 5933-5953.	1.7	8
2	Optimization of LiCl concentration on polyaniline composites for symmetric and asymmetric supercapacitor devices. Materials Chemistry and Physics, 2022, 285, 126109.	2.0	1
3	Co3S4-CoS/rGO hybrid nanostructure: promising material for high-performance and high-rate capacity supercapacitor. Journal of Solid State Electrochemistry, 2021, 25, 465-477.	1.2	17
4	Graphene encapsulated NiS/Ni3S4 mesoporous nanostructure: A superlative high energy supercapacitor device with excellent cycling performance. Electrochimica Acta, 2021, 365, 137367.	2.6	35
5	Influence of calcination temperature on the electrochemical performance of Sol–gel-derived ZnO/C nanocomposite electrodes. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	5
6	Extra-Durable Hybrid Supercapacitor Based on Cobalt Sulfide and Carbon (MWCNT) Matrix Electrodes. Journal of Energy Storage, 2021, 34, 102200.	3.9	16
7	Sol-Gel coated WO3 thin films based complementary electrochromic smart windows. Materials Letters, 2021, 296, 129881.	1.3	18
8	Nickel bismuth oxide as negative electrode for battery-type asymmetric supercapacitor. Chemical Engineering Journal, 2021, 422, 130058.	6.6	49
9	CdS microspheres as promising electrode materials for high performance supercapacitors. Materials Science in Semiconductor Processing, 2020, 105, 104677.	1.9	32
10	AgCoO 2 â^'Co 3 O 4 /CMC Cloudy Architecture as High Performance Electrodes for Asymmetric Supercapacitors. ChemElectroChem, 2020, 7, 535-545.	1.7	17
11	Copper incorporated nickel sulphide on Ni-foam: Binder-free electrode for high performance supercapacitors. AIP Conference Proceedings, 2020, , .	0.3	1
12	Azadirachta indica (Neem) tree bark based activated carbon for electrochemical supercapacitor. AIP Conference Proceedings, 2020, , .	0.3	0
13	Derivation of activated carbon from tamarindus indica tree bark for supercapacitor applications. AIP Conference Proceedings, 2019, , .	0.3	1
14	One step synthesis of ZrO2 microstructures for electrochemical capacitor applications. AIP Conference Proceedings, 2019, , .	0.3	3
15	Neem seed shell derived carbon: KOH activation towards symmetric supercapacitor applications. AIP Conference Proceedings, 2019, , .	0.3	1
16	Polyethylene glycol-assisted growth of Ni3S4 closely packed nanosheets on Ni-foam for enhanced supercapacitor device. Journal of Solid State Electrochemistry, 2019, 23, 2937-2950.	1.2	9
17	Lithium ferrite (α-LiFe ₅ O ₈) nanorod based battery-type asymmetric supercapacitor with NiO nanoflakes as the counter electrode. New Journal of Chemistry, 2019, 43, 15375-15388.	1.4	30
18	Flaky Structured V2O5: Morphology, Formation Scheme and Supercapactive Performance. Russian Journal of Electrochemistry, 2019, 55, 97-106.	0.3	1

#	Article	IF	CITATIONS
19	Influence of thiourea concentration on the CuS nanostructures and identification of the most suited electrolyte for high energy density supercapacitor. Ionics, 2019, 25, 4409-4423.	1.2	25
20	Surfactant tuned morphology of mesoporous β-Co(OH)2/CMC nanoflakes: a prospective candidate for supercapacitors. Journal of Solid State Electrochemistry, 2019, 23, 1325-1338.	1.2	21
21	Ordered mesoporous Co3O4/CMC nanoflakes for superior cyclic life and ultra high energy density supercapacitor. Applied Surface Science, 2019, 480, 371-383.	3.1	63
22	The influence of Ag incorporation on the electrochemical characteristics of ZnO/C electrodes. CrystEngComm, 2019, 21, 2900-2907.	1.3	0
23	Hierarchical \hat{l}^2 -Co(OH)2/CoO nanosheets: an additive-free synthesis approach for supercapattery applications. Ionics, 2019, 25, 2437-2444.	1.2	17
24	Mesoporous nickel sulphide nanostructures for enhanced supercapacitor performance. Applied Surface Science, 2019, 480, 186-198.	3.1	58
25	Effect of modifier oxides (SrO, Al2O3, ZnO, CdO, PbO and Bi2O3) on the luminescence properties of Er3+ doped telluroborate glasses for laser and optical amplifier applications. Journal of Luminescence, 2019, 207, 534-544.	1.5	42
26	Microwave assisted fabrication of l-Arginine capped α-Ni(OH)2 microstructures as an electrode material for high performance hybrid supercapacitors. Materials Chemistry and Physics, 2019, 224, 357-368.	2.0	26
27	Carboxymethyl cellulose aided fabrication of flaky structured mesoporous β-Co(OH)2/C nanocomposite for supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 2107-2117.	1.1	15
28	Spongy structured α-Ni(OH)2: Facile and rapid synthesis for supercapattery applications. Materials Letters, 2019, 238, 35-37.	1.3	19
29	Supercapacitor performance study of lithium chloride doped polyaniline. Applied Surface Science, 2018, 460, 40-47.	3.1	23
30	Surfactant free nickel sulphide nanoparticles for high capacitance supercapacitors. AIP Conference Proceedings, 2018, , .	0.3	6
31	Green synthesis of ZnO/carbon (ZnO/C) as an electrode material for symmetric supercapacitor devices. Applied Surface Science, 2018, 449, 521-527.	3.1	67
32	Effect of ZnO on the spectroscopic properties of Dy3+ doped zinc telluroborate glasses for white light generation. Journal of Non-Crystalline Solids, 2018, 498, 386-394.	1.5	21
33	Luminescence and energy transfer studies on Sm 3+ /Tb 3+ codoped telluroborate glasses for WLED applications. Journal of Molecular Structure, 2018, 1151, 266-276.	1.8	69
34	V 2 O 5 / nitrogen enriched mesoporous carbon spheres nanocomposite as supercapacitor electrode. Microporous and Mesoporous Materials, 2018, 258, 83-94.	2.2	43
35	Ni-Doped SnO ₂ Nanoparticles for Sensing and Photocatalysis. ACS Applied Nano Materials, 2018, 1, 5823-5836.	2.4	55
36	High performance supercapacitor behavior of hydrothermally synthesized CdTe nanorods. Journal of Materials Science: Materials in Electronics, 2018, 29, 17397-17404.	1.1	25

#	Article	IF	CITATIONS
37	Fabrication of CeO 2 /PANI composites for high energy density supercapacitors. Materials Research Bulletin, 2018, 106, 357-364.	2.7	53
38	Effect of PbO on the B 2 O 3 –TeO 2 –P 2 O 5 –BaO–CdO–Sm 2 O 3 glasses - Structural and optical investigations. Journal of Non-Crystalline Solids, 2017, 461, 35-46.	1.5	35
39	Ni–CeO ₂ spherical nanostructures for magnetic and electrochemical supercapacitor applications. Physical Chemistry Chemical Physics, 2017, 19, 4396-4404.	1.3	82
40	High performance supercapacitor and non-enzymatic hydrogen peroxide sensor based on tellurium nanoparticles. Sensing and Bio-Sensing Research, 2017, 13, 40-48.	2.2	30
41	Design of additive free 3D floral shaped V ₂ O ₅ @ Ni foam for high performance supercapacitors. Materials Technology, 2017, 32, 584-590.	1.5	17
42	Controlled synthesis of nanostructured molybdenum oxide electrodes for high performance supercapacitor devices. Applied Surface Science, 2017, 416, 461-469.	3.1	79
43	Pure and Co doped CeO2 nanostructure electrodes with enhanced electrochemical performance for energy storage applications. Ceramics International, 2017, 43, 10494-10501.	2.3	39
44	Structural and luminescence studies of Eu3+: TeO2B2O3AO AF2 (AÂ=ÂPb, Ba, Zn, Cd, Sr) glasses. Journal of Molecular Structure, 2017, 1144, 290-299.	1.8	25
45	Cr2O3 nanoparticles: Advanced electrode materials for high performance pseudocapacitors. AIP Conference Proceedings, 2017, , .	0.3	1
46	Ag-Incorporated CeO ₂ nano cauliflowers for high-performance supercapacitor devices. New Journal of Chemistry, 2017, 41, 10841-10850.	1.4	24
47	Enhanced electrochemical behavior of ceria based zirconia electrolytes for intermediate temperature solid oxide fuel cell applications. Journal of Materials Science: Materials in Electronics, 2016, 27, 10980-10992.	1.1	11
48	Red light generation through the lead boroâ^'telluroâ^'phosphate glasses activated by Eu3+ ions. Journal of Molecular Structure, 2016, 1119, 276-285.	1.8	60
49	Size–strain distribution analysis of SnO ₂ nanoparticles and their multifunctional applications as fiber optic gas sensors, supercapacitors and optical limiters. RSC Advances, 2016, 6, 90559-90570.	1.7	58
50	Influence of Modifier Cations on the Spectroscopic Properties of Dy3+ Doped Telluroborate Glasses for White Light Applications. Journal of Fluorescence, 2016, 26, 2281-2294.	1.3	24
51	Hexagonal CeO ₂ nanostructures: an efficient electrode material for supercapacitors. Dalton Transactions, 2016, 45, 14352-14362.	1.6	99
52	Structural and optical investigations on Dy 3+ doped lithium tellurofluoroborate glasses for white light applications. Journal of Luminescence, 2016, 176, 15-24.	1.5	93
53	Fabrication of two-dimensional reduced graphene oxide supported V 2 O 5 networks and their application in supercapacitors. Materials Chemistry and Physics, 2016, 170, 266-275.	2.0	83
54	Investigations on growth and characterization of glycine admixture sodium molybdate crystals for nonlinear optical applications. Optik, 2016, 127, 1708-1713.	1.4	5

#	Article	IF	CITATIONS
55	Cubic fluorite phase of samarium doped cerium oxide (CeO2)0.96Sm0.04 for solid oxide fuel cell electrolyte. Journal of Materials Science: Materials in Electronics, 2016, 27, 1566-1573.	1.1	39
56	Spectroscopic behaviour of Dy3+ ions in lead telluro-fluoroborate glasses for photonic applications. AIP Conference Proceedings, 2015, , .	0.3	0
57	Supercapacitor Behavior of Cerium Oxide Nanoparticles in Neutral Aqueous Electrolytes. Energy & Fuels, 2015, 29, 8246-8253.	2.5	150
58	Luminescence Properties and Optical Absorption of X ray-Irradiated KBr: Ce3+, Tb3+ Crystals. Journal of Fluorescence, 2015, 25, 239-246.	1.3	0
59	Cold nanoparticles for sensitive detection of hydrogen peroxide: a simple non-enzymatic approach. Journal of Applied Electrochemistry, 2015, 45, 963-971.	1.5	18
60	Luminescent Properties of Cerium Doped Potassium Iodide Single Crystals in Response to γ-irradiation. Journal of Fluorescence, 2015, 25, 641-646.	1.3	4
61	Amperometric sensing of hydrogen peroxide using glassy carbon electrode modified with copper nanoparticles. Materials Research Bulletin, 2015, 70, 315-320.	2.7	28
62	Improved luminescence intensity and stability of thermal annealed ZnO incorporated Alq3 composite films. Journal of Fluorescence, 2015, 25, 1629-1635.	1.3	11
63	High performance supercapacitor based on carbon coated V2O5 nanorods. Journal of Electroanalytical Chemistry, 2015, 758, 111-116.	1.9	62
64	Structural and luminescence behavior of Sm3+ ions doped lead boro-telluro-phosphate glasses. Journal of Luminescence, 2015, 159, 207-218.	1.5	93
65	Effect of thermal annealing on the structural and optical properties of trisâ€{8â€hydroxyquinoline)aluminum(III) (Alq ₃) films. Luminescence, 2015, 30, 352-357.	1.5	9
66	Ag ₃ O ₄ grafted NiO nanosheets for high performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 420-427.	5.2	37
67	Synthesis and optical properties of ZnO incorporated Tris-(8-hydroxyquinoline)aluminum. Journal of Luminescence, 2014, 153, 188-193.	1.5	16
68	Role of annealing duration on the microstructure and electrochemical performance of β-V ₂ O ₅ thin films. Philosophical Magazine, 2014, 94, 946-955.	0.7	6
69	Synthesis of mesh-like Fe2O3/C nanocomposite via greener route for high performance supercapacitors. RSC Advances, 2014, 4, 4631-4637.	1.7	64
70	Preparation of vinyl polymer stabilized silver nanospheres for electro-analytical determination of H2O2. Sensors and Actuators B: Chemical, 2014, 193, 149-156.	4.0	32
71	V ₂ O ₅ /functionalized MWCNT hybrid nanocomposite: the fabrication and its enhanced supercapacitive performance. RSC Advances, 2014, 4, 37437-37445.	1.7	38
72	Enhanced luminescence properties of hybrid Alq 3 /ZnO (organic/inorganic) composite films. Journal of Luminescence, 2014, 156, 1-7.	1.5	18

#	Article	IF	CITATIONS
73	Nanostructured CuO/reduced graphene oxide composite for hybrid supercapacitors. RSC Advances, 2014, 4, 23485.	1.7	133
74	Structural and luminescence studies on Dy3+ doped lead boro–telluro-phosphate glasses. Physica B: Condensed Matter, 2014, 454, 72-81.	1.3	80
75	MnO ₂ grafted V ₂ O ₅ nanostructures: formation mechanism, morphology and supercapacitive features. CrystEngComm, 2014, 16, 10711-10720.	1.3	48
76	Ag incorporated Mn ₃ O ₄ /AC nanocomposite based supercapacitor devices with high energy density and power density. Dalton Transactions, 2014, 43, 17528-17538.	1.6	62
77	Thermoluminescence and optical studies on Î ³ -ray irradiated KCl: Tb3+crystals. Radiation Effects and Defects in Solids, 2014, 169, 9-18.	0.4	4
78	Electrochemical supercapacitor behaviour of α-Ni(OH)2 nanoparticles synthesized via green chemistry route. Journal of Electroanalytical Chemistry, 2014, 727, 53-58.	1.9	33
79	Optical, structural, and electrochromic properties of cobalt oxide films prepared via the sol–gel route. Materials Science in Semiconductor Processing, 2013, 16, 1410-1415.	1.9	16
80	Thickness dependent supercapacitor behaviour of sol-gel spin coated nanostructured vanadium pentoxide thin films. Philosophical Magazine, 2013, 93, 1490-1499.	0.7	11
81	Biopolymer-Assisted Synthesis of λ-MnO ₂ Nanoparticles As an Electrode Material for Aqueous Symmetric Supercapacitor Devices. Industrial & Engineering Chemistry Research, 2013, 52, 18262-18268.	1.8	69
82	Thermoluminescence, optical absorption, photoluminescence, FT-IR and XRD studies on l-arginine doped orthophosphoric acid. Journal of Luminescence, 2013, 142, 184-188.	1.5	4
83	Effect of annealing temperature on the supercapacitor behaviour of β-V2O5 thin films. Materials Research Bulletin, 2013, 48, 760-766.	2.7	78
84	Nanosheet-Assembled NiO Microstructures for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2013, 5, 10767-10773.	4.0	133
85	Supercapacitor Studies on NiO Nanoflakes Synthesized Through a Microwave Route. ACS Applied Materials & Interfaces, 2013, 5, 2188-2196.	4.0	542
86	Nanostructured nickel doped β-V2O5 thin films for supercapacitor applications. Materials Research Bulletin, 2013, 48, 2578-2582.	2.7	46
87	Microstructural, electrical and optical properties of ZnO:Mo thin films with various thickness by spray pyrolysis. Journal of Analytical and Applied Pyrolysis, 2013, 102, 68-75.	2.6	59
88	Synthesis of Mn ₃ O ₄ /Amorphous Carbon Nanoparticles as Electrode Material for High Performance Supercapacitor Applications. Energy & Fuels, 2013, 27, 3508-3515.	2.5	156
89	Microwave assisted synthesis of Co3O4 nanoparticles for high-performance supercapacitors. Electrochimica Acta, 2013, 106, 500-505.	2.6	198
90	Porous NiO/C Nanocomposites as Electrode Material for Electrochemical Supercapacitors. ACS Sustainable Chemistry and Engineering, 2013, 1, 1110-1118.	3.2	119

Gopalan Muralidharan

#	Article	IF	CITATIONS
91	Interconnected V ₂ O ₅ Nanoporous Network for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2012, 4, 4484-4490.	4.0	408
92	Supercapacitor behaviour of cobalt-doped nickel oxide films. Philosophical Magazine Letters, 2012, 92, 436-441.	0.5	5
93	Electrochromic properties of nickel oxide and mixed Co/Ni oxide films prepared via sol–gel route. Journal of Non-Crystalline Solids, 2012, 358, 354-359.	1.5	20
94	Supercapacitor behavior of α-MnMoO4 nanorods on different electrolytes. Materials Research Bulletin, 2012, 47, 3348-3351.	2.7	75
95	Luminescence studies on gamma irradiated KCl: Ce3+ crystals. Physica B: Condensed Matter, 2012, 407, 2185-2189.	1.3	16
96	Synthesising of ZnO nanopetals for supercapacitor applications. Micro and Nano Letters, 2011, 6, 668.	0.6	40
97	Effect of temperature of annealing on optical, structural and electrochromic properties of sol–gel dip coated molybdenum oxide films. Applied Surface Science, 2011, 257, 2074-2079.	3.1	69
98	Enhanced electrochromic performance of nanoporous NiO films. Materials Science in Semiconductor Processing, 2011, 14, 78-83.	1.9	25
99	Optical, structural and electrochromic properties of nickel oxide films produced by sol–gel technique. Solar Energy, 2011, 85, 978-984.	2.9	42
100	SUPERCAPACITOR BEHAVIOR OF SPRAY DEPOSITED SnO₂ THIN FILMS. International Journal of Nanoscience, 2011, 10, 1245-1248.	0.4	7
101	Effect of tungsten on the electrochromic behaviour of sol–gel dip coated molybdenum oxide thin films. Materials Research Bulletin, 2010, 45, 542-545.	2.7	7
102	Enhanced electrochromism in cerium doped molybdenum oxide thin films. Materials Research Bulletin, 2010, 45, 1969-1972.	2.7	12
103	Photoluminescence, optical absorption and XRD studies on X-ray irradiated terbium doped KBr crystals. Journal of Luminescence, 2010, 130, 343-346.	1.5	9
104	Thermoluminescence and optical studies on X-irradiated terbium-doped potassium bromide crystals. Journal of Luminescence, 2010, 130, 618-622.	1.5	29
105	NANOPOROUS NiO BASED ELECTROCHROMIC WINDOW. Functional Materials Letters, 2009, 02, 143-145.	0.7	5
106	Structural and optical studies of Eu ³⁺ ions in alkali borate glasses. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 131-139.	0.8	46
107	Preparation and characterization of F doped SnO2 films and electrochromic properties of FTO/NiO films. Current Applied Physics, 2009, 9, 67-72.	1.1	35
108	The effect of annealing temperature on the electrochromic properties of nanostructured NiO films. Solar Energy Materials and Solar Cells, 2009, 93, 1195-1201.	3.0	99

#	Article	IF	CITATIONS
109	Enhanced luminescent properties and optical absorption of γ-irradiated KI: Ce3+, Tb3+ crystals. Journal of Luminescence, 2009, 129, 24-29.	1.5	17
110	Nanostructured NiO based all solid state electrochromic device. Journal of Sol-Gel Science and Technology, 2008, 46, 190-194.	1.1	39
111	Photoluminescence study of Cupric Telluride thin films. AIP Conference Proceedings, 2008, , .	0.3	0
112	EFFECT OF FLUORINE CONTENT ON THE MORPHOLOGICAL, STRUCTURAL, OPTICAL AND ELECTRICAL PROPERTIES OF NANOSTRUCTURED SnO2 FILMS. Surface Review and Letters, 2007, 14, 1149-1156.	0.5	11
113	Thermoluminescence and other optical studies on RbBr:Tb3+ crystals. Physica Status Solidi (B): Basic Research, 2007, 244, 726-734.	0.7	13
114	Luminescence and laser Raman studies on gammaâ€irradiated RbI:Sm ³⁺ crystals. Physica Status Solidi (B): Basic Research, 2007, 244, 3730-3738.	0.7	5
115	Apatites and britholites, are they akin - as probed by Eu3+luminescence?. Journal of Physics Condensed Matter, 2001, 13, 537-547.	0.7	12
116	Thermoluminescence and Fluorescence Studies on RbBr:Gd ²⁺ . Physica Status Solidi (B): Basic Research, 1988, 146, 727-731.	0.7	4
117	Thermoluminescence and Other Optical Studies on γâ€Irradiated RbCl: Gd ²⁺ . Physica Status Solidi (B): Basic Research, 1988, 150, 315-322.	0.7	4