
Thomas Swift

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6519094/publications.pdf Version: 2024-02-01

THOMAS SWIFT

#	Article	IF	CITATIONS
1	Evaluation of ligand modified poly (N-Isopropyl acrylamide) hydrogel for etiological diagnosis of corneal infection. Experimental Eye Research, 2022, 214, 108881.	2.6	3
2	GENERATION AND USE OF FUNCTIONALISED HYDROGELS THAT CAN RAPIDLY SAMPLE INFECTED SURFACES. MethodsX, 2022, 9, 101684.	1.6	0
3	Semi-interpenetrating Polyurethane Network Foams Containing Highly Branched Poly(N-isopropyl) Tj ETQq1 1 0	.784314 r 4.6	gBT /Overloci
4	Development of a novel micro-bead force spectroscopy approach to measure the ability of a thermo-active polymer to remove bacteria from a corneal model. Scientific Reports, 2021, 11, 13697.	3.3	1
5	Branched amphotericin functional poly(<i>N</i> - <i>iso</i> propyl acrylamide): an antifungal polymer. Royal Society Open Science, 2021, 8, 201655.	2.4	3
6	Effect of polymerisation by microwave on the physical properties of molecularly imprinted polymers (MIPs) specific for caffeine. Polymer Chemistry, 2020, 11, 5778-5789.	3.9	7
7	Förster resonance energy transfer in fluorophore labeled poly(2-ethyl-2-oxazoline)s. Journal of Materials Chemistry C, 2020, 8, 14125-14137.	5.5	11
8	Developments in silicone technology for use in stoma care. British Journal of Nursing, 2020, 29, S6-S15.	0.7	11
9	Fluorescence Spectroscopy Analysis of the Bacteria–Mineral Interface: Adsorption of Lipopolysaccharides to Silica and Alumina. Langmuir, 2020, 36, 1623-1632.	3.5	13
10	Highly branched poly(<i>N</i> -isopropyl acrylamide) functionalized with an inducer molecule suppresses quorum sensing in <i>Chromobacterium violaceum</i> . Chemical Communications, 2019, 55, 9765-9768.	4.1	7
11	Short phosphate glass fiber - PLLA composite to promote bone mineralization. Materials Science and Engineering C, 2019, 104, 109929.	7.3	14
12	Osteoinduction of 3D printed particulate and short-fibre reinforced composites produced using PLLA and apatite-wollastonite. Composites Science and Technology, 2019, 184, 107834.	7.8	18
13	A muscle mimetic polyelectrolyte–nanoclay organic–inorganic hybrid hydrogel: its self-healing, shape-memory and actuation properties. Journal of Materials Chemistry B, 2019, 7, 1475-1493.	5.8	24
14	Highly-branched poly(N-isopropyl acrylamide) functionalised with pendant Nile red and chain end vancomycin for the detection of Gram-positive bacteria. Acta Biomaterialia, 2019, 87, 197-206.	8.3	11
15	A self-healable fluorescence active hydrogel based on ionic block copolymers prepared <i>via</i> ring opening polymerization and xanthate mediated RAFT polymerization. Polymer Chemistry, 2018, 9, 1190-1205.	3.9	19
16	Highly-ordered onion micelles made from amphiphilic highly-branched copolymers. Polymer Chemistry, 2018, 9, 5617-5629.	3.9	3
17	Segmental Mobility Studies of Poly(<i>N</i> â€isopropyl acrylamide) Interactions with Gold Nanoparticles and Its Use as a Thermally Driven Trapping System. Macromolecular Rapid Communications, 2018, 39, e1800090.	3.9	2
18	Antibiotic functionalised polymers reduce bacterial biofilm and bioburden in a simulated infection of the cornea. Biomaterials Science, 2018, 6, 2101-2109.	5.4	14

THOMAS SWIFT

#	Article	IF	CITATIONS
19	Core (Polystyrene)–Shell [Poly(glycerol monomethacrylate)] Particles. ACS Applied Materials & Interfaces, 2017, 9, 7577-7590.	8.0	5
20	Pseudo electron-deficient organometallics: limited reactivity towards electron-donating ligands. Dalton Transactions, 2017, 46, 15676-15683.	3.3	13
21	The effect of hyperbranched poly(acrylic acid)s on the morphology and size of precipitated nanoscale (fluor)hydroxyapatite. Journal of Materials Chemistry B, 2017, 5, 6027-6033.	5.8	6
22	Binding of Bacteria to Poly(<i>N</i> -isopropylacrylamide) Modified with Vancomycin: Comparison of Behavior of Linear and Highly Branched Polymers. Biomacromolecules, 2017, 18, 2887-2899.	5.4	23
23	Poly(acrylic acid) interpolymer complexes. Soft Matter, 2017, 13, 8736-8744.	2.7	25
24	Analysis using size exclusion chromatography of poly(N -isopropyl acrylamide) using methanol as an eluent. Journal of Chromatography A, 2017, 1508, 16-23.	3.7	24
25	Förster Resonance Energy Transfer across interpolymer complexes of poly(acrylic acid) and poly(acrylamide). Polymer, 2017, 123, 10-20.	3.8	11
26	pH responsive highly branched poly(N-isopropylacrylamide) with trihistidine or acid chain ends. RSC Advances, 2016, 6, 71345-71350.	3.6	7
27	The pH-responsive behaviour of poly(acrylic acid) in aqueous solution is dependent on molar mass. Soft Matter, 2016, 12, 2542-2549.	2.7	297
28	Measuring poly(acrylamide) flocculants in fresh water using inter-polymer complex formation. Environmental Science: Water Research and Technology, 2015, 1, 332-340.	2.4	14
29	Poly(acrylic acid) interpolymer complexation: use of a fluorescence time resolved anisotropy as a poly(acrylamide) probe. RSC Advances, 2014, 4, 57991-57995.	3.6	12
30	Highly-branched poly(N-isopropyl acrylamide)s with core–shell morphology below the lower critical solution temperature. RSC Advances, 2014, 4, 50932-50937.	3.6	24
31	pH Dependence of Acrylate-Derivative Polyelectrolyte Properties. , 0, , .		2