
Larisa Tsarkova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6518362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Volatile Aroma Surfactants: The Evaluation of the Adsorption–Evaporation Behavior under Dynamic and Equilibrium Conditions. Langmuir, 2022, 38, 2793-2803.	1.6	5
2	Volatile surfactants: Characterization and areas of application. Current Opinion in Colloid and Interface Science, 2022, 60, 101592.	3.4	5
3	Elaborating Mechanisms behind the Durability of Tough Polylactide Monofilaments under Elevated Temperature and Humidity Conditions. ACS Applied Polymer Materials, 2021, 3, 1406-1414.	2.0	6
4	Functionalization of textiles by deposition of UV-cured organic thin layers with charge storage properties for electronic and environmental technology. Progress in Organic Coatings, 2021, 157, 106332.	1.9	1
5	Evaluating the Potential of Polylactide Nonwovens as Bio-Based Media for Air Filtration. Textiles, 2021, 1, 268-282.	1.8	0
6	Improved Maxwell Model Approach and its Applicability toward Lifetime Prediction of Biobased Viscoelastic Fibers. Macromolecular Materials and Engineering, 2021, 306, 2100443.	1.7	4
7	Tensiometry as a Simple Analytical Method for Quantification of Solubility and Release of Aroma Molecules in Aqueous Media. Molecules, 2021, 26, 7655.	1.7	5
8	Temperature-Controlled Solvent Vapor Annealing of Thin Block Copolymer Films. Polymers, 2019, 11, 1312.	2.0	19
9	Aroma Molecules as Dynamic Volatile Surfactants: Functionality beyond the Scent. ACS Applied Materials & Interfaces, 2019, 11, 40988-40995.	4.0	9
10	pH-triggered aggregation behavior of hybrid chitosan assemblies with controlled density distribution of gold nanoparticles. Colloid and Polymer Science, 2019, 297, 339-350.	1.0	3
11	Combined UV–Vis-absorbance and reflectance spectroscopy study of dye transfer kinetics in aqueous mixtures of surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 550, 74-81.	2.3	3
12	Enzymeâ€Compatible Dynamic Nanoreactors from Electrostatically Bridged Likeâ€Charged Surfactants and Polyelectrolytes. Angewandte Chemie, 2018, 130, 9546-9551.	1.6	1
13	Synergic Swelling of Interactive Network Support and Block Copolymer Films during Solvent Vapor Annealing. Langmuir, 2018, 34, 9950-9960.	1.6	7
14	Enzyme ompatible Dynamic Nanoreactors from Electrostatically Bridged Likeâ€Charged Surfactants and Polyelectrolytes. Angewandte Chemie - International Edition, 2018, 57, 9402-9407.	7.2	18
15	Surface Roughness-Mediated Ordering in Block Copolymer Films toward Spatially Controlled Patterns. Macromolecules, 2017, 50, 6840-6848.	2.2	10
16	Hierarchical Manipulation of Block Copolymer Patterns on 3D Topographic Substrates: Beyond Graphoepitaxy. Advanced Materials, 2016, 28, 6900-6905.	11.1	19
17	Keratin made micro-tubes: The paradoxical thermal behavior of cortex and cuticle. International Journal of Biological Macromolecules, 2016, 89, 592-598.	3.6	7
18	Electric field manipulated nanopatterns in thin films of metalorganic 3-miktoarm star terpolymers. Soft Matter, 2016, 12, 4866-4874.	1.2	3

LARISA TSARKOVA

#	Article	IF	CITATIONS
19	Multilamellar Thermoresponsive Emulsions Stabilized with Biocompatible Semicrystalline Block Copolymers. ACS Macro Letters, 2016, 5, 163-167.	2.3	15
20	Intermatrix Synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dots. Applied Surface Science, 2016, 368, 417-426.	3.1	20
21	Reversible Switching of Block Copolymer Nanopatterns by Orthogonal Electric Fields. Small, 2015, 11, 6058-6064.	5.2	9
22	Raspberry-like Pt clusters with controlled spacing produced by deposition of loaded block copolymer micelles from supercritical CO2. European Polymer Journal, 2015, 71, 73-84.	2.6	4
23	Combining Graphoepitaxy and Electric Fields toward Uniaxial Alignment of Solvent-Annealed Polystyrene– <i>b</i> –Poly(dimethylsiloxane) Block Copolymers. Chemistry of Materials, 2015, 27, 6890-6898.	3.2	35
24	Floated Lamella Films of Styrenic Block Copolymers: Local Shearing Deformations and Heterogeneous Layer at the Substrate. Macromolecules, 2014, 47, 316-323.	2.2	2
25	Enhancing Ordering Dynamics in Solvent-Annealed Block Copolymer Films by Lithographic Hard Mask Supports. Macromolecules, 2014, 47, 3059-3067.	2.2	24
26	Morphology-Controlled Kinetics of Solvent Uptake by Block Copolymer Films in Nonselective Solvent Vapors. ACS Macro Letters, 2014, 3, 803-807.	2.3	22
27	Selfâ€Templating Amphiphilic Polymer Precursors for Fabricating Mesostructured Silica Particles: A Waterâ€Based Facile and Universal Method. Advanced Materials, 2013, 25, 1017-1021.	11.1	34
28	Self-Templating Amphiphilic Polymer Precursors for Fabricating Mesostructured Silica Particles: A Water-Based Facile and Universal Method (Adv. Mater. 7/2013). Advanced Materials, 2013, 25, 1016-1016.	11.1	0
29	Spherical Polyelectrolyte Brushes as Templates for Stable Dispersions of Polyaniline Based Conducting Particles. Macromolecular Symposia, 2012, 317-318, 137-141.	0.4	1
30	Recent Developments in In Situ SFM of Block Copolymers: 3D Volume Structures and Dynamics. Nanoscience and Technology, 2012, , 195-233.	1.5	2
31	Distortion of a Unit Cell versus Phase Transition to Nonbulk Morphology in Frustrated Films of Cylinder-Forming Polystyrene- <i>b</i> -polybutadiene Diblock Copolymers. Macromolecules, 2012, 45, 7985-7994.	2.2	13
32	Guiding Block Copolymers into Sequenced Patterns via Inverted Terrace Formation. Macromolecules, 2012, 45, 2494-2501.	2.2	15
33	Complexation of Anionic Liposomes with Spherical Polycationic Brushes. Langmuir, 2011, 27, 5310-5315.	1.6	14
34	Directed Assembly of Block Copolymers by Sparsely Patterned Substrates. Journal of Physical Chemistry C, 2011, 115, 25185-25200.	1.5	32
35	All-Silica Colloidosomes with a Particle-Bilayer Shell. ACS Nano, 2011, 5, 3937-3942.	7.3	82
36	The self-assembly of asymmetric block copolymers in films contacting a patterned surface. Polymer Science - Series A, 2011, 53, 261-270.	0.4	2

LARISA TSARKOVA

#	Article	IF	CITATIONS
37	Nanoreactorâ€Assisted Polymerization Toward Stable Dispersions of Conductive Composite Particles. Macromolecular Rapid Communications, 2011, 32, 462-467.	2.0	18
38	Nanopattern Evolution in Block Copolymer Films: Experiment, Simulations and Challenges. Advances in Polymer Science, 2010, , 33-73.	0.4	49
39	The effects of the molecular weight and structure of poly(acrylic acid) on the formation of "blue silverâ€: Moscow University Chemistry Bulletin, 2010, 65, 331-334.	0.2	4
40	Atomic force microscopy of supported lipid membranes and their complexes with polycations. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2010, 4, 240-246.	0.3	2
41	Effect of Confinement on the Mesoscale and Macroscopic Swelling of Thin Block Copolymer Films. Langmuir, 2010, 26, 6610-6617.	1.6	56
42	Going beyond the Surface: Revealing Complex Block Copolymer Morphologies with 3D Scanning Force Microscopy. ACS Nano, 2010, 4, 5609-5616.	7.3	15
43	Liposomes Remain Intact When Complexed with Polycationic Brushes. Journal of the American Chemical Society, 2010, 132, 5948-5949.	6.6	33
44	Stabilization of 3D Network Morphologies in Thin Films via Chemical Modification of ABC Triblock Terpolymers. Macromolecules, 2010, 43, 10213-10215.	2.2	11
45	Confinement Effects on the Microphase Separation and Swelling of Block Copolymer Films. , 2010, , 1-4.		Ο
46	Electric Field Alignment of a Block Copolymer Nanopattern: Direct Observation of the Microscopic Mechanism. ACS Nano, 2009, 3, 1091-1096.	7.3	110
47	"Micro-structure–macro-response―relationship in swollen block copolymer films. Soft Matter, 2009, , ·	1.2	3
48	3-dimensional control over lamella orientation and order in thick block copolymer films. Soft Matter, 2009, 5, 812-819.	1.2	47
49	Specific Features of Defect Structure and Dynamics in the Cylinder Phase of Block Copolymers. ACS Nano, 2008, 2, 1143-1152.	7.3	55
50	Time Evolution of Surface Relief Structures in Thin Block Copolymer Films. Macromolecules, 2007, 40, 6930-6939.	2.2	50
51	Nanoscaling of Microdomain Spacings in Thin Films of Cylinder-Forming Block Copolymers. Nano Letters, 2007, 7, 843-846.	4.5	56
52	Friction and Relaxation Dynamics of Highly Extended Polymer Brush Melts under Compression and Shear. Macromolecules, 2007, 40, 2539-2547.	2.2	21
53	Towards Nanoporous Membranes based on ABC Triblock Terpolymers. Small, 2007, 3, 1056-1063.	5.2	47
54	Structure and Dynamics of Cylinder Forming Block Copolymers in Thin Films. Nanoscience and Technology, 2007, , 231-265.	1.5	6

LARISA TSARKOVA

#	Article	IF	CITATIONS
55	Large scale alignment of a lamellar block copolymer thin film via electric fields: a time-resolved SFM study. Soft Matter, 2006, 2, 1089-1094.	1.2	71
56	Substrate-Induced Phase Transitions in Thin Films of Cylinder-Forming Diblock Copolymer Melts. Macromolecules, 2006, 39, 3608-3615.	2.2	97
57	Rapid Transitions between Defect Configurations in a Block Copolymer Melt. Nano Letters, 2006, 6, 1574-1577.	4.5	44
58	Defect Evolution in Block Copolymer Thin Films via Temporal Phase Transitions. Langmuir, 2006, 22, 8089-8095.	1.6	47
59	The influence of Ag+ ions on transformations of silver clusters in polyacrylate aqueous solutions. Colloid Journal, 2006, 68, 761-766.	0.5	6
60	Formation of silver clusters by borohydride reduction of AgNO3 in polyacrylate aqueous solutions. Colloid Journal, 2005, 67, 72-78.	0.5	7
61	Borohydride reduction of AgNO3 in polyacrylate aqueous solutions: Two-stage synthesis of "blue silver― Colloid Journal, 2005, 67, 213-216.	0.5	9
62	Interactions between Langmuir–Blodgett Polymer Monolayers Studied with the Surface Force Apparatus. Colloid Journal, 2004, 66, 84-94.	0.5	8
63	Interactions between Surfaces Bearing Highly Extended Polymer Melt Brushes. 1. Adhesion and Spontaneous Thinning. Macromolecules, 2002, 35, 2817-2826.	2.2	7
64	Title is missing!. Colloid Journal, 2001, 63, 312-317.	0.5	5
65	Coordination properties of polymeric azacrown ethers. Makromolekulare Chemie Macromolecular Symposia, 1992, 59, 163-182.	0.6	4