Sidney M Morris Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6518214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Arginine metabolism: nitric oxide and beyond. Biochemical Journal, 1998, 336, 1-17.	3.7	2,379
2	Dysregulated Arginine Metabolism, Hemolysis-Associated Pulmonary Hypertension, and Mortality in Sickle Cell Disease. JAMA - Journal of the American Medical Association, 2005, 294, 81.	7.4	619
3	R <scp>EGULATION OF</scp> E <scp>NZYMES OF THE</scp> U <scp>REA</scp> C <scp>YCLE AND</scp> A <scp>RGININE</scp> M <scp>ETABOLISM</scp> . Annual Review of Nutrition, 2002, 22, 87-105.	10.1	566
4	Arginine Metabolism: Boundaries of Our Knowledge. Journal of Nutrition, 2007, 137, 1602S-1609S.	2.9	464
5	Recent advances in arginine metabolism: roles and regulation of the arginases. British Journal of Pharmacology, 2009, 157, 922-930.	5.4	422
6	Arginine: beyond protein. American Journal of Clinical Nutrition, 2006, 83, 508S-512S.	4.7	322
7	Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4843-4848.	7.1	307
8	Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E75-E82.	3.5	302
9	Arginine Therapy. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 63-69.	5.6	302
10	Microenvironments in Tuberculous Granulomas Are Delineated by Distinct Populations of Macrophage Subsets and Expression of Nitric Oxide Synthase and Arginase Isoforms. Journal of Immunology, 2013, 191, 773-784.	0.8	292
11	Enzymes of Arginine Metabolism. Journal of Nutrition, 2004, 134, 2743S-2747S.	2.9	268
12	Arginine Metabolism Revisited. Journal of Nutrition, 2016, 146, 2579S-2586S.	2.9	253
13	Decreased Arginine Bioavailability and Increased Serum Arginase Activity in Asthma. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 148-153.	5.6	252
14	Human type II arginase: sequence analysis and tissue-specific expression. Gene, 1997, 193, 157-161.	2.2	203
15	Induction of arginase I transcription by IL-4 requires a composite DNA response element for STAT6 and C/EBPβ. Gene, 2005, 353, 98-106.	2.2	171
16	Probing Erectile Function:ÂS-(2-Boronoethyl)-l-Cysteine Binds to Arginase as a Transition State Analogue and Enhances Smooth Muscle Relaxation in Human Penile Corpus Cavernosumâ€,‡. Biochemistry, 2001, 40, 2678-2688.	2.5	163
17	IL-4 and IL-13 upregulate arginase I expression by cAMP and JAK/STAT6 pathways in vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 2000, 279, C248-C256.	4.6	148
18	Differential regulation of arginases and inducible nitric oxide synthase in murine macrophage cells. American Journal of Physiology - Endocrinology and Metabolism, 1998, 275, E740-E747.	3.5	146

SIDNEY M MORRIS JR

#	Article	IF	CITATIONS
19	Arginase I Expression and Activity in Human Mononuclear Cells After Injury. Annals of Surgery, 2001, 233, 393-399.	4.2	142
20	Effect of eculizumab on haemolysisâ€associated nitric oxide depletion, dyspnoea, and measures of pulmonary hypertension in patients with paroxysmal nocturnal haemoglobinuria. British Journal of Haematology, 2010, 149, 414-425.	2.5	137
21	Regulation of mRNA levels for five urea cycle enzymes in rat liver by diet, cyclic AMP, and glucocorticoids. Archives of Biochemistry and Biophysics, 1987, 256, 343-353.	3.0	129
22	Generation of a Mouse Model for Arginase II Deficiency by Targeted Disruption of the Arginase II Gene. Molecular and Cellular Biology, 2001, 21, 811-813.	2.3	128
23	Amplified Expression Profiling of Platelet Transcriptome Reveals Changes in Arginine Metabolic Pathways in Patients With Sickle Cell Disease. Circulation, 2007, 115, 1551-1562.	1.6	126
24	Regulation of Messenger Ribonucleic Acid Levels for Five Urea Cycle Enzymes in Cultured Rat Hepatocytes. Requirements for Cyclic Adenosine Monophosphate, Glucocorticoids, and Ongoing Protein Synthesis. Molecular Endocrinology, 1988, 2, 444-451.	3.7	102
25	Recent advances in arginine metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 2004, 7, 45-51.	2.5	100
26	Activities of arginase I and II are limiting for endothelial cell proliferation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R64-R69.	1.8	94
27	The Central Role of Arginine Catabolism in T-Cell Dysfunction and Increased Susceptibility to Infection After Physical Injury. Annals of Surgery, 2014, 259, 171-178.	4.2	92
28	Roles of conserved residues in the arginase family. BBA - Proteins and Proteomics, 1998, 1382, 23-37.	2.1	82
29	Arginases and arginine deficiency syndromes. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, 15, 64-70.	2.5	80
30	Hydroxyurea and Arginine Therapy: Impact on Nitric Oxide Production in Sickle Cell Disease. Journal of Pediatric Hematology/Oncology, 2003, 25, 629-634.	0.6	79
31	Arginine: Master and Commander in Innate Immune Responses. Science Signaling, 2010, 3, pe27.	3.6	78
32	LXRα Regulates Macrophage Arginase 1 Through PU.1 and Interferon Regulatory Factor 8. Circulation Research, 2011, 109, 492-501.	4.5	76
33	Arginase-2 Mediates Diabetic Renal Injury. Diabetes, 2011, 60, 3015-3022.	0.6	76
34	Arginine metabolism in vascular biology and disease. Vascular Medicine, 2005, 10, S83-S87.	1.5	70
35	Arginase I: a limiting factor for nitric oxide and polyamine synthesis by activated macrophages?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R2237-R2242.	1.8	67
36	FoxO4 Promotes Early Inflammatory Response Upon Myocardial Infarction via Endothelial Arg1. Circulation Research. 2015, 117, 967-977.	4.5	64

SIDNEY M MORRIS JR

#	Article	IF	CITATIONS
37	Cloning of human agmatinase. An alternate path for polyamine synthesis induced in liver by hepatitis B virus. American Journal of Physiology - Renal Physiology, 2002, 282, G375-G381.	3.4	58
38	Arginase inhibition mediates renal tissue protection in diabetic nephropathy by a nitric oxide synthase 3-dependent mechanism. Kidney International, 2013, 84, 1189-1197.	5.2	45
39	Inhibition of phosphodiesterase 4 amplifies cytokine-dependent induction of arginase in macrophages. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L534-L539.	2.9	42
40	MACROPHAGE ARGINASE REGULATION BY CCAAT/ENHANCER-BINDING PROTEIN ??. Shock, 2005, 23, 168-172.	2.1	41
41	Retinoic acid promotes the development of Arg1â€expressing dendritic cells for the regulation of Tâ€cell differentiation. European Journal of Immunology, 2013, 43, 967-978.	2.9	41
42	Regulation of Arginine Availability and Its Impact on NO Synthesis. , 2000, , 187-197.		38
43	A cohort of supporting metabolic enzymes is coinduced with nitric oxide synthase in human tumor cell lines. Cancer Letters, 1996, 103, 79-84.	7.2	34
44	Arginase Activities and Global Arginine Bioavailability in Wild-Type and ApoE-Deficient Mice: Responses to High Fat and High Cholesterol Diets. PLoS ONE, 2010, 5, e15253.	2.5	31
45	Induction of arginases I and II in cornea during herpes simplex virus infection. Virus Research, 2001, 73, 177-182.	2.2	30
46	Diabetic nephropathy is resistant to oral <scp>l</scp> -arginine or <scp>l</scp> -citrulline supplementation. American Journal of Physiology - Renal Physiology, 2014, 307, F1292-F1301.	2.7	30
47	Glucocorticoids Mediate the Enhanced Expression of Intestinal Type II Arginase and Argininosuccinate Lyase in Postweaning Pigs. Journal of Nutrition, 1999, 129, 799-803.	2.9	28
48	Selective Endothelial Overexpression of Arginase II Induces Endothelial Dysfunction and Hypertension and Enhances Atherosclerosis in Mice. PLoS ONE, 2012, 7, e39487.	2.5	28
49	Arginase inhibition: a new treatment for preventing progression of established diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2015, 309, F447-F455.	2.7	26
50	Isolation and characterization of a human hepatic epithelial-like cell line (AKN-1) from a normal liver. In Vitro Cellular and Developmental Biology - Animal, 1999, 35, 190-197.	1.5	23
51	Determination of Mammalian Arginase Activity. Methods in Enzymology, 2008, 440, 221-230.	1.0	23
52	Proposals for Upper Limits of Safe Intake for Arginine and Tryptophan in Young Adults and an Upper Limit of Safe Intake for Leucine in the Elderly. Journal of Nutrition, 2016, 146, 2652S-2654S.	2.9	22
53	Arginase-2 mediates renal ischemia-reperfusion injury. American Journal of Physiology - Renal Physiology, 2017, 313, F522-F534.	2.7	20
54	Hormonal induction of hepatic mitochondrial ornithine/citrulline transporter mRNA. Biochemical and Biophysical Research Communications, 2002, 294, 749-752.	2.1	18

SIDNEY M MORRIS JR

#	Article	IF	CITATIONS
55	Vertebrate Agmatinases: What Role Do They Play in Agmatine Catabolism?. Annals of the New York Academy of Sciences, 2003, 1009, 30-33.	3.8	17
56	Salicylate-enhanced activation of transcription factors induced by interferon-Î ³ . Biochemical Journal, 1999, 342, 503-507.	3.7	15
57	Enhancing kidney DDAH-1 expression by adenovirus delivery reduces ADMA and ameliorates diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2020, 318, F509-F517.	2.7	15
58	<scp>l</scp> â€Homoarginine supplementation prevents diabetic kidney damage. Physiological Reports, 2019, 7, e14235.	1.7	13
59	Arginine metabolism in vascular biology and disease. Vascular Medicine, 2005, 10, S83-S87.	1.5	12
60	Differential induction of transcription for glucocorticoid-responsive genes in cultured rat hepatocytes. Biochemical and Biophysical Research Communications, 1990, 166, 133-138.	2.1	11
61	Cell- and Isoform-Specific Increases in Arginase Expression in Acute Silica-Induced Pulmonary Inflammation*. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2007, 70, 118-127.	2.3	11
62	Distinct roles of arginases 1 and 2 in diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2017, 313, F899-F905.	2.7	9
63	From Inflammation to Wound Healing: Using a Simple Model to Understand the Functional Versatility ofÂMurine Macrophages. Bulletin of Mathematical Biology, 2011, 73, 2575-2604.	1.9	8
64	The Arginine-to-Ornithine Ratio: Biomarker of Arginase Activity and Predictor of Mortality in Sickle Cell Disease Blood, 2004, 104, 237-237.	1.4	6
65	Session II: Physiology of Arginine Metabolism—Discussion Summary. Journal of Nutrition, 2004, 134, 2796S-2797S.	2.9	2
66	Application of Branched-Chain Amino Acids in Experimental Animals: Discussion of Session 2 ,. Journal of Nutrition, 2006, 136, 254S-255S.	2.9	1
67	Biology and Biochemistry: Discussion of Session 2. Journal of Nutrition, 2007, 137, 1548S.	2.9	1
68	Introduction to the Symposium Proceedings. Journal of Nutrition, 2004, 134, 2742S.	2.9	0