Martin Lawoko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6518049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on lignin-based polymeric, micro- and nano-structured materials. Reactive and Functional Polymers, 2014, 85, 78-96.	2.0	578
2	Structural Differences between the Ligninâ^'Carbohydrate Complexes Present in Wood and in Chemical Pulps. Biomacromolecules, 2005, 6, 3467-3473.	2.6	264
3	Tunable Thermosetting Epoxies Based on Fractionated and Well-Characterized Lignins. Journal of the American Chemical Society, 2018, 140, 4054-4061.	6.6	220
4	A critical review on the analysis of lignin carbohydrate bonds. Green Chemistry, 2019, 21, 1573-1595.	4.6	204
5	Ligninâ€Retaining Transparent Wood. ChemSusChem, 2017, 10, 3445-3451.	3.6	192
6	Solvent screening for the fractionation of industrial kraft lignin. Holzforschung, 2016, 70, 11-20.	0.9	161
7	Characterisation of lignin-carbohydrate complexes (LCCs) of spruce wood (Picea abies L.) isolated with two methods. Holzforschung, 2006, 60, 156-161.	0.9	133
8	Lignin-Based Epoxy Resins: Unravelling the Relationship between Structure and Material Properties. Biomacromolecules, 2020, 21, 1920-1928.	2.6	118
9	Kinetics and mechanism of autohydrolysis of hardwoods. Bioresource Technology, 2010, 101, 7812-7819.	4.8	103
10	Fractional Profiling of Kraft Lignin Structure: Unravelling Insights on Lignin Reaction Mechanisms. ACS Sustainable Chemistry and Engineering, 2020, 8, 1112-1120.	3.2	88
11	Fractionation of Technical Lignin: Molecular Mass and pH Effects. BioResources, 2013, 8, .	0.5	87
12	Differences in extractability under subcritical water reveal interconnected hemicellulose and lignin recalcitrance in birch hardwoods. Green Chemistry, 2018, 20, 2534-2546.	4.6	75
13	Changes in the lignin-carbohydrate complex in softwood kraft pulp during kraft and oxygen delignification. Holzforschung, 2004, 58, 603-610.	0.9	74
14	Structural features of mildly fractionated lignin carbohydrate complexes (LCC) from spruce. RSC Advances, 2016, 6, 42120-42131.	1.7	74
15	Structural Insights on Recalcitrance during Hydrothermal Hemicellulose Extraction from Wood. ACS Sustainable Chemistry and Engineering, 2017, 5, 5156-5165.	3.2	73
16	Reversible crosslinking of lignin via the furan–maleimide Diels–Alder reaction. Green Chemistry, 2015, 17, 4991-5000.	4.6	71
17	In muro deacetylation of xylan affects lignin properties and improves saccharification of aspen wood. Biotechnology for Biofuels, 2017, 10, 98.	6.2	64
18	Renewable Thiol–Ene Thermosets Based on Refined and Selectively Allylated Industrial Lignin. ACS Sustainable Chemistry and Engineering, 2017, 5, 10918-10925.	3.2	61

Martin Lawoko

#	Article	IF	CITATIONS
19	Structural Basis for the Formation and Regulation of Lignin–Xylan Bonds in Birch. ACS Sustainable Chemistry and Engineering, 2016, 4, 5319-5326.	3.2	60
20	A molecular dynamics study of the effect of glycosidic linkage type in the hemicellulose backbone on the molecular chain flexibility. Plant Journal, 2016, 88, 56-70.	2.8	58
21	A glucuronoyl esterase from <i>Acremonium alcalophilum</i> cleaves native ligninâ€carbohydrate ester bonds. FEBS Letters, 2016, 590, 2611-2618.	1.3	57
22	Characterization of lignin-carbohydrate complexes from spruce sulfite pulp. Holzforschung, 2006, 60, 162-165.	0.9	51
23	Mechanical and Morphological Properties of Lignin-Based Thermosets. ACS Applied Polymer Materials, 2020, 2, 668-676.	2.0	51
24	On the formation of lignin polysaccharide networks in Norway spruce. Phytochemistry, 2015, 111, 177-184.	1.4	44
25	Lignin-carbohydrate network in wood and pulps: A determinant for reactivity. Holzforschung, 2007, 61, 668-674.	0.9	43
26	Exploring the Effects of Different Cross-Linkers on Lignin-Based Thermoset Properties and Morphologies. ACS Sustainable Chemistry and Engineering, 2021, 9, 1692-1702.	3.2	43
27	The structure of galactoglucomannan impacts the degradation under alkaline conditions. Cellulose, 2019, 26, 2155-2175.	2.4	41
28	Unveiling the structure and ultrastructure of lignin carbohydrate complexes in softwoods. International Journal of Biological Macromolecules, 2013, 62, 705-713.	3.6	37
29	On the solubility of wood in non-derivatising ionic liquids. Green Chemistry, 2013, 15, 2374.	4.6	35
30	Modification of Kraft Lignin to Expose Diazobenzene Groups: Toward pH- and Light-Responsive Biobased Polymers. Biomacromolecules, 2015, 16, 2979-2989.	2.6	35
31	Allylation of a lignin model phenol: a highly selective reaction under benign conditions towards a new thermoset resin platform. RSC Advances, 2016, 6, 96281-96288.	1.7	32
32	Toward a Consolidated Lignin Biorefinery: Preserving the Lignin Structure through Additiveâ€Free Protection Strategies. ChemSusChem, 2020, 13, 4666-4677.	3.6	31
33	Transforming technical lignins to structurally defined star-copolymers under ambient conditions. Green Chemistry, 2019, 21, 2478-2486.	4.6	30
34	SEPARATION OF GALACTOGLUCOMANNANS, LIGNIN, AND LIGNIN-CARBOHYDRATE COMPLEXES FROM HOT-WATER-EXTRACTED NORWAY SPRUCE BY CROSS-FLOW FILTRATION AND ADSORPTION CHROMATOGRAPHY. BioResources, 2012, 7, .	0.5	26
35	Application of mild autohydrolysis to facilitate the dissolution of wood chips in direct-dissolution solvents. Green Chemistry, 2016, 18, 3286-3294.	4.6	26
36	Deciphering lignin heterogeneity in ball milled softwood: unravelling the synergy between the supramolecular cell wall structure and molecular events. Green Chemistry, 2021, 23, 3348-3364.	4.6	26

Martin Lawoko

#	Article	IF	CITATIONS
37	Acetylation and Sugar Composition Influence the (In)Solubility of Plant β-Mannans and Their Interaction with Cellulose Surfaces. ACS Sustainable Chemistry and Engineering, 2020, 8, 10027-10040.	3.2	25
38	Enrichment and Identification of Lignin–Carbohydrate Complexes in Softwood Extract. ACS Sustainable Chemistry and Engineering, 2020, 8, 11795-11804.	3.2	23
39	The reactivity of lignin carbohydrate complex (LCC) during manufacture of dissolving sulfite pulp from softwood. Industrial Crops and Products, 2018, 115, 315-322.	2.5	21
40	New Structures in <i>Eucalyptus</i> Kraft Lignin with Complex Mechanistic Implications. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	19
41	<i>Phoma herbarum</i> , a soil fungus able to grow on natural lignin and synthetic lignin (DHP) as sole carbon source and cause lignin degradation. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1175-1182.	1.4	17
42	Nativity of lignin carbohydrate bonds substantiated by biomimetic synthesis. Journal of Experimental Botany, 2019, 70, 5591-5601.	2.4	16
43	A one-pot biomimetic synthesis of selectively functionalized lignins from monomers: a green functionalization platform. Green Chemistry, 2018, 20, 2651-2662.	4.6	15
44	High Value Use of Technical Lignin. Fractionated Lignin Enables Facile Synthesis of Microcapsules with Various Shapes: Hemisphere, Bowl, Mini-tablets, or Spheres with Single Holes. ACS Sustainable Chemistry and Engineering, 2020, 8, 13282-13291.	3.2	14
45	Protected lignin biorefining through cyclic extraction: gaining fundamental insights into the tuneable properties of lignin by chemometrics. Green Chemistry, 2022, 24, 1211-1223.	4.6	14
46	Lignin as a Renewable Substrate for Polymers: From Molecular Understanding and Isolation to Targeted Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 5481-5485.	3.2	13
47	Active role of lignin in anchoring wood-based stabilizers to the emulsion interface. Green Chemistry, 2021, 23, 9084-9098.	4.6	13
48	Fractionation and Characterization of Completely Dissolved Ball Milled Hardwood. Journal of Wood Chemistry and Technology, 2011, 31, 183-203.	0.9	11
49	Structural changes in residual kraft pulp lignins. Effects of kappa number and degree of oxygen delignification. Nordic Pulp and Paper Research Journal, 2003, 18, 395-399.	0.3	9
50	On the effect of hemicellulose removal on celluloselignin interactions. Nordic Pulp and Paper Research Journal, 2017, 32, 542-549.	0.3	7
51	Structural basis for lignin recalcitrance during sulfite pulping for production of dissolving pulp from pine heartwood. Industrial Crops and Products, 2022, 177, 114391.	2.5	7
52	Fundamental Insights on the Physical and Chemical Properties of Organosolv Lignin from Norway Spruce Bark. Biomacromolecules, 2022, 23, 3349-3358.	2.6	7
53	Intrinsic dissolution kinetics and topochemistry of xylan, mannan, and lignin during autoâ€hydrolysis of red maple wood meal. Canadian Journal of Chemical Engineering, 2019, 97, 649-661.	0.9	6
54	Lignin carbohydrate complex studies during kraft pulping for producing paper grade pulp from birch. Tappi Journal, 2020, 19, 447-460.	0.2	4

MARTIN LAWOKO

#	Article	IF	CITATIONS
55	Recent Strategies for Lignin-Based Thermosets. ACS Symposium Series, 2021, , 175-206.	0.5	3
56	Self-assembled carbon spheres prepared from abundant lignin and urea for photocatalytic and self-propelling applications. Carbon Trends, 2021, 3, 100040.	1.4	3
5 7	On the effect of hemicellulose removal on cellulose-lignin interactions OPEN ACCESS. Nordic Pulp and Paper Research Journal, 2017, 32, 542-549.	0.3	3
58	Stabilising mannose using sodium dithionite at alkaline conditions. Holzforschung, 2020, 74, 131-140.	0.9	1