List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6517930/publications.pdf Version: 2024-02-01

Ішил М Еоснт

#	Article	IF	CITATIONS
1	Methanogenic Biodegradation of iso-Alkanes by Indigenous Microbes from Two Different Oil Sands Tailings Ponds. Microorganisms, 2021, 9, 1569.	1.6	5
2	Accelerated consolidation of oil sands tailings using an anaerobic bioreactor. Bioresource Technology Reports, 2020, 11, 100547.	1.5	4
3	Methanogenic biodegradation of iso-alkanes and cycloalkanes during long-term incubation with oil sands tailings. Environmental Pollution, 2020, 258, 113768.	3.7	19
4	Microbially-mediated de-watering and consolidation ("Biodensificationâ€) of oil sands mature fine tailings, amended with agri-business by-products. Nova Scientia, 2020, 12, .	0.0	3
5	Second-generation stoichiometric mathematical model to predict methane emissions from oil sands tailings. Science of the Total Environment, 2019, 694, 133645.	3.9	17
6	Genomic analysis of the mesophilic Thermotogae genus <i>Mesotoga</i> reveals phylogeographic structure and genomic determinants of its distinct metabolism. Environmental Microbiology, 2019, 21, 456-470.	1.8	28
7	The microbiology of oil sands tailings: past, present, future. FEMS Microbiology Ecology, 2017, 93, .	1.3	69
8	Genomic insights into temperature-dependent transcriptional responses of Kosmotoga olearia, a deep-biosphere bacterium that can grow from 20 to 79°C. Extremophiles, 2017, 21, 963-979.	0.9	11
9	Vitamin and Amino Acid Auxotrophy in Anaerobic Consortia Operating under Methanogenic Conditions. MSystems, 2017, 2, .	1.7	28
10	Nextâ€Generation Sequencing Assessment of Eukaryotic Diversity in Oil Sands Tailings Ponds Sediments and SurfaceÂWater. Journal of Eukaryotic Microbiology, 2016, 63, 732-743.	0.8	26
11	Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds. Science of the Total Environment, 2016, 553, 250-257.	3.9	40
12	Co-occurrence of methanogenesis and N2 fixation in oil sands tailings. Science of the Total Environment, 2016, 565, 306-312.	3.9	20
13	Long-Term Incubation Reveals Methanogenic Biodegradation of C ₅ and C ₆ <i>iso</i> -Alkanes in Oil Sands Tailings. Environmental Science & Technology, 2015, 49, 14732-14739.	4.6	37
14	Microbial Metabolism Alters Pore Water Chemistry and Increases Consolidation of Oil Sands Tailings. Journal of Environmental Quality, 2015, 44, 145-153.	1.0	15
15	Comparative analysis of metagenomes from three methanogenic hydrocarbon-degrading enrichment cultures with 41 environmental samples. ISME Journal, 2015, 9, 2028-2045.	4.4	87
16	Microbial metagenomics of oil sands tailings ponds: small bugs, big data. Genome, 2015, 58, 507-510.	0.9	8
17	Biodegradation of <scp>C</scp> ₇ and <scp>C</scp> ₈ <i>iso</i> â€alkanes under methanogenic conditions. Environmental Microbiology, 2015, 17, 4898-4915.	1.8	43
18	DNA stable-isotope probing of oil sands tailings pond enrichment cultures reveals different key players for toluene degradation under methanogenic and sulfidogenic conditions. FEMS Microbiology Ecology, 2015, 91, .	1.3	24

#	Article	IF	CITATIONS
19	Anaerobic alkane biodegradation by cultures enriched from oil sands tailings ponds involves multiple species capable of fumarate addition. FEMS Microbiology Ecology, 2015, 91, .	1.3	41
20	Draft Genome Sequence of Uncultivated Desulfosporosinus sp. Strain Tol-M, Obtained by Stable Isotope Probing Using [13 C 6]Toluene. Genome Announcements, 2015, 3, .	0.8	13
21	Draft Genome Sequences of Three <i>Smithella</i> spp. Obtained from a Methanogenic Alkane-Degrading Culture and Oil Field Produced Water. Genome Announcements, 2014, 2, .	0.8	27
22	Draft Genome Sequence of Uncultivated <i>Firmicutes</i> (<i>Peptococcaceae</i> SCADC) Single Cells Sorted from Methanogenic Alkane-Degrading Cultures. Genome Announcements, 2014, 2, .	0.8	32
23	Draft Genome Sequences of <i>Campylobacterales</i> (<i>Epsilonproteobacteria</i>) Obtained from Methanogenic Oil Sands Tailings Pond Metagenomes. Genome Announcements, 2014, 2, .	0.8	8
24	Bioconversion of coal: new insights from a core flooding study. RSC Advances, 2014, 4, 22779.	1.7	40
25	Re-analysis of omics data indicates <i>Smithella</i> may degrade alkanes by addition to fumarate under methanogenic conditions. ISME Journal, 2014, 8, 2353-2356.	4.4	68
26	Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry. Frontiers in Microbiology, 2014, 5, 107.	1.5	41
27	Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry. Frontiers in Microbiology, 2014, 5, 106.	1.5	44
28	The EmhABC efflux pump in Pseudomonas fluorescens LP6a is involved in naphthalene tolerance but not efflux. Applied Microbiology and Biotechnology, 2013, 97, 2587-2596.	1.7	6
29	Physico-chemical factors affect chloramphenicol efflux and EmhABC efflux pump expression in Pseudomonas fluorescens cLP6a. Research in Microbiology, 2013, 164, 172-180.	1.0	2
30	Metagenomic analysis of an anaerobic alkane-degrading microbial culture: potential hydrocarbon-activating pathways and inferred roles of community members. Genome, 2013, 56, 599-611.	0.9	82
31	Metagenomics of Hydrocarbon Resource Environments Indicates Aerobic Taxa and Genes to be Unexpectedly Common. Environmental Science & Technology, 2013, 47, 10708-10717.	4.6	179
32	Genome Sequence of the Mesophilic Thermotogales Bacterium Mesotoga prima MesG1.Ag.4.2 Reveals the Largest Thermotogales Genome To Date. Genome Biology and Evolution, 2012, 4, 812-820.	1.1	24
33	Microbial Communities Involved in Methane Production from Hydrocarbons in Oil Sands Tailings. Environmental Science & Technology, 2012, 46, 9802-9810.	4.6	102
34	The EmhABC efflux pump decreases the efficiency of phenanthrene biodegradation by Pseudomonas fluorescens strain LP6a. Applied Microbiology and Biotechnology, 2012, 95, 757-766.	1.7	10
35	Mesotoga prima gen. nov., sp. nov., the first described mesophilic species of the Thermotogales. Extremophiles, 2012, 16, 387-393.	0.9	105
36	Anaerobic Biodegradation of Longer-Chain <i>n</i> -Alkanes Coupled to Methane Production in Oil Sands Tailings. Environmental Science & Technology, 2011, 45, 5892-5899.	4.6	180

#	Article	IF	CITATIONS
37	Adhesion to the hydrocarbon phase increases phenanthrene degradation by Pseudomonas fluorescens LP6a. Biodegradation, 2011, 22, 485-496.	1.5	29
38	Characterization of Hymenobacter isolates from Victoria Upper Glacier, Antarctica reveals five new species and substantial non-vertical evolution within this genus. Extremophiles, 2011, 15, 45-57.	0.9	99
39	Molecular- and cultivation-based analyses of microbial communities in oil field water and in microcosms amended with nitrate to control H2S production. Applied Microbiology and Biotechnology, 2011, 89, 2027-2038.	1.7	32
40	Biological souring and mitigation in oil reservoirs. Applied Microbiology and Biotechnology, 2011, 92, 263-282.	1.7	290
41	Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Applied Microbiology and Biotechnology, 2011, 92, 653-675.	1.7	90
42	An alternative physiological role for the EmhABC efflux pump in Pseudomonas fluorescens cLP6a. BMC Microbiology, 2011, 11, 252.	1.3	42
43	Storage of oil field-produced waters alters their chemical and microbiological characteristics. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 471-481.	1.4	15
44	Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures. International Journal of Coal Geology, 2010, 82, 81-93.	1.9	170
45	Searching for Mesophilic <i>Thermotogales</i> Bacteria: "Mesotogas―in the Wild. Applied and Environmental Microbiology, 2010, 76, 4896-4900.	1.4	44
46	Mature fine tailings from oil sands processing harbour diverse methanogenic communities. Canadian Journal of Microbiology, 2010, 56, 459-470.	0.8	122
47	Role of Extracellular Polymeric Substances in the Surface Chemical Reactivity of <i>Hymenobacter aerophilus</i> , a Psychrotolerant Bacterium. Applied and Environmental Microbiology, 2010, 76, 102-109.	1.4	59
48	Sulfide persistence in oil field waters amended with nitrate and acetate. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1499-1511.	1.4	22
49	2′-Methyl and 1′-xylosyl derivatives of 2′-hydroxyflexixanthin are major carotenoids of Hymenobacter species. Tetrahedron Letters, 2009, 50, 2656-2660.	0.7	7
50	Effect of salt on aerobic biodegradation of petroleum hydrocarbons in contaminated groundwater. Biodegradation, 2009, 20, 27-38.	1.5	41
51	Analysis of Force Interactions between AFM Tips and Hydrophobic Bacteria Using DLVO Theory. Langmuir, 2009, 25, 6968-6976.	1.6	96
52	Two different mechanisms for adhesion of Gram-negative bacterium, Pseudomonas fluorescens LP6a, to an oil–water interface. Colloids and Surfaces B: Biointerfaces, 2008, 62, 36-41.	2.5	58
53	Aerobic biotransformation of decalin (decahydronaphthalene) by Rhodococcus spp Biodegradation, 2008, 19, 785-794.	1.5	7
54	Mechanical properties of hexadecane–water interfaces with adsorbed hydrophobic bacteria. Colloids and Surfaces B: Biointerfaces, 2008, 62, 273-279.	2.5	34

#	Article	IF	CITATIONS
55	Hydrophobic bacteria at the hexadecane–water interface: Examination of micrometre-scale interfacial properties. Colloids and Surfaces B: Biointerfaces, 2008, 67, 59-66.	2.5	32
56	Anaerobic Biodegradation of Aromatic Hydrocarbons: Pathways and Prospects. Journal of Molecular Microbiology and Biotechnology, 2008, 15, 93-120.	1.0	261
57	A first approximation kinetic model to predict methane generation from an oil sands tailings settling basin. Chemosphere, 2008, 72, 1573-1580.	4.2	46
58	Atomic Force Microscopy Measurement of Heterogeneity in Bacterial Surface Hydrophobicity. Langmuir, 2008, 24, 4944-4951.	1.6	77
59	Differences in Carotenoid Composition among <i>Hymenobacter</i> and Related Strains Support a Tree-Like Model of Carotenoid Evolution. Applied and Environmental Microbiology, 2008, 74, 2016-2022.	1.4	58
60	Potential Microbial Enhanced Oil Recovery Processes: A Critical Analysis. , 2008, , .		54
61	Metabolism of BTEX and Naphtha Compounds to Methane in Oil Sands Tailings. Environmental Science & Technology, 2007, 41, 2350-2356.	4.6	122
62	Cultivation-independent and -dependent characterization of Bacteria resident beneath John Evans Glacier. FEMS Microbiology Ecology, 2007, 59, 318-330.	1.3	103
63	Selectivity among organic sulfur compounds in one- and two-liquid-phase cultures of Rhodococcus sp. strain JVH1. Biodegradation, 2007, 18, 473-480.	1.5	17
64	Sulfur from benzothiophene and alkylbenzothiophenes supports growth of Rhodococcus sp. strain JVH1. Biodegradation, 2007, 18, 541-549.	1.5	21
65	Biodegradation of Short-Chainn-Alkanes in Oil Sands Tailings under Methanogenic Conditions. Environmental Science & Technology, 2006, 40, 5459-5464.	4.6	154
66	Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles, 2006, 10, 171-179.	0.9	285
67	Distinct Bacterial Communities Exist beneath a High Arctic Polythermal Glacier. Applied and Environmental Microbiology, 2006, 72, 5838-5845.	1.4	72
68	Intrinsic bioremediation of diesel-contaminated cold groundwater in bedrock. Journal of Environmental Engineering and Science, 2006, 5, 13-27.	0.3	8
69	Mutations in the Central Cavity and Periplasmic Domain Affect Efflux Activity of the Resistance-Nodulation-Division Pump EmhB from Pseudomonas fluorescens cLP6a. Journal of Bacteriology, 2006, 188, 115-123.	1.0	33
70	Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiology Ecology, 2005, 53, 141-155.	1.3	222
71	Bacterial biodegradation of aliphatic sulfides under aerobic carbon- or sulfur-limited growth conditions. Journal of Applied Microbiology, 2005, 99, 1444-1454.	1.4	26
72	Comparison of Microbial Community Compositions of Two Subglacial Environments Reveals a Possible Role for Microbes in Chemical Weathering Processes. Applied and Environmental Microbiology, 2005, 71, 6986-6997.	1.4	225

#	Article	IF	CITATIONS
73	Use of a Novel Fluorinated Organosulfur Compound To Isolate Bacteria Capable of Carbon-Sulfur Bond Cleavage. Applied and Environmental Microbiology, 2004, 70, 1487-1493.	1.4	35
74	Saturable, Energy-Dependent Uptake of Phenanthrene in Aqueous Phase by Mycobacterium sp. Strain RJGII-135. Applied and Environmental Microbiology, 2004, 70, 363-369.	1.4	61
75	Culturable Bacteria in Subglacial Sediments and Ice from Two Southern Hemisphere Glaciers. Microbial Ecology, 2004, 47, 329-40.	1.4	222
76	Stabilization of Oil-Water Emulsions by Hydrophobic Bacteria. Applied and Environmental Microbiology, 2004, 70, 6333-6336.	1.4	166
77	Hydrocarbon Spills on Antarctic Soils:Â Effects and Management. Environmental Science & Technology, 2004, 38, 1265-1274.	4.6	232
78	Identification and Characterization of the emhABC Efflux System for Polycyclic Aromatic Hydrocarbons in Pseudomonas fluorescens cLP6a. Journal of Bacteriology, 2003, 185, 6233-6240.	1.0	69
79	Free-Living Heterotrophic Nitrogen-Fixing Bacteria Isolated from Fuel-Contaminated Antarctic Soils. Applied and Environmental Microbiology, 2002, 68, 5181-5185.	1.4	99
80	Selective transport and accumulation of alkanes byRhodococcus erythropolis S+14He. Biotechnology and Bioengineering, 2002, 80, 650-659.	1.7	49
81	Characterization of Sphingomonas sp. Ant 17, an Aromatic Hydrocarbon-Degrading Bacterium Isolated from Antarctic Soil. Microbial Ecology, 2002, 43, 44-54.	1.4	118
82	Bioremediation of DDT-Contaminated Soils: A Review. Bioremediation Journal, 2001, 5, 225-246.	1.0	128
83	Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. Polar Biology, 2000, 23, 183-188.	0.5	115
84	Uptake and Active Efflux of Polycyclic Aromatic Hydrocarbons by Pseudomonas fluorescens LP6a. Applied and Environmental Microbiology, 2000, 66, 5387-5392.	1.4	100
85	Microbial Life beneath a High Arctic Glacier. Applied and Environmental Microbiology, 2000, 66, 3214-3220.	1.4	341
86	Hydrocarbon-degrading filamentous fungi isolated from flare pit soils in northern and western Canada. Canadian Journal of Microbiology, 2000, 46, 38-49.	0.8	116
87	Effect of Nitrogen Source on Biodegradation of Crude Oil by a Defined Bacterial Consortium Incubated under Cold, Marine Conditions. Environmental Technology (United Kingdom), 1999, 20, 839-849.	1.2	43
88	Development of a standard bacterial consortium for laboratory efficacy testing of commercial freshwater oil spill bioremediation agents. Journal of Industrial Microbiology and Biotechnology, 1998, 21, 322-330.	1.4	19
89	Comparison of oil composition changes due to biodegradation and physical weathering in different oils. Journal of Chromatography A, 1998, 809, 89-107.	1.8	297
90	Effects of two diamine biocides on the microbial community from an oil field. Canadian Journal of Microbiology, 1998, 44, 1060-1065.	0.8	27

#	Article	IF	CITATIONS
91	Degradation of hydrocarbons in crude oil by the ascomycete <i>Pseudallescheria boydii</i> (Microascaceae). Canadian Journal of Microbiology, 1998, 44, 270-278.	0.8	11
92	Transposon and spontaneous deletion mutants of plasmid-borne genes encoding polycyclic aromatic hydrocarbon degradation by a strain of Pseudomonas fluorescens. Biodegradation, 1996, 7, 353-366.	1.5	49
93	Environmental gasoline-utilizing isolates and clinical isolates of Pseudomonas aeruginosa are taxonomically indistinguishable by chemotaxonomic and molecular techniques. Microbiology (United) Tj ETQq1 1	007784314	∙ngoBT/Ovei
94	OIL SPILL BIOREMEDIATION AGENTS—CANADIAN EFFICACY TEST PROTOCOLS. International Oil Spill Conference Proceedings, 1995, 1995, 91-96.	0.1	7
95	Characterization of the diversity of sulfate-reducing bacteria in soil and mining waste water environments by nucleic acid hybridization techniques. Canadian Journal of Microbiology, 1994, 40, 955-964.	0.8	29
96	Identification of Distinct Communities of Sulfate-Reducing Bacteria in Oil Fields by Reverse Sample Genome Probing. Applied and Environmental Microbiology, 1992, 58, 3542-3552.	1.4	102
97	Effect of Emulsan on Biodegradation of Crude Oil by Pure and Mixed Bacterial Cultures. Applied and Environmental Microbiology, 1989, 55, 36-42.	1.4	124