Björn Herrmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/651793/publications.pdf

Version: 2024-02-01

48 papers

2,053 citations

236612 25 h-index 39 g-index

53 all docs 53 docs citations

53 times ranked 1651 citing authors

#	Article	IF	Citations
1	Entrained neural oscillations in multiple frequency bands comodulate behavior. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14935-14940.	3.3	183
2	Spatiotemporal dynamics of auditory attention synchronize with speech. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3873-3878.	3.3	169
3	Neural Alpha Dynamics in Younger and Older Listeners Reflect Acoustic Challenges and Predictive Benefits. Journal of Neuroscience, 2015, 35, 1458-1467.	1.7	116
4	Low-Frequency Neural Oscillations Support Dynamic Attending in Temporal Context. Timing and Time Perception, 2014, 2, 62-86.	0.4	107
5	Alpha Oscillatory Dynamics Index Temporal Expectation Benefits in Working Memory. Cerebral Cortex, 2015, 25, 1938-1946.	1.6	95
6	Finding the right control: The mismatch negativity under investigation. Clinical Neurophysiology, 2012, 123, 507-512.	0.7	82
7	Temporal expectations and neural amplitude fluctuations in auditory cortex interactively influence perception. Neurolmage, 2016, 124, 487-497.	2.1	77
8	Neural Oscillations in Speech: Don't be Enslaved by the Envelope. Frontiers in Human Neuroscience, 2012, 6, 250.	1.0	72
9	Localization of the syntactic mismatch negativity in the temporal cortex: An MEG study. NeuroImage, 2009, 48, 590-600.	2.1	62
10	Frequency-specific adaptation in human auditory cortex depends on the spectral variance in the acoustic stimulation. Journal of Neurophysiology, 2013, 109, 2086-2096.	0.9	55
11	Aging Affects Adaptation to Sound-Level Statistics in Human Auditory Cortex. Journal of Neuroscience, 2018, 38, 1989-1999.	1.7	52
12	A model of listening engagement (MoLE). Hearing Research, 2020, 397, 108016.	0.9	50
13	Oscillatory Phase Dynamics in Neural Entrainment Underpin Illusory Percepts of Time. Journal of Neuroscience, 2013, 33, 15799-15809.	1.7	47
14	Altered temporal dynamics of neural adaptation in the aging human auditory cortex. Neurobiology of Aging, 2016, 45, 10-22.	1.5	47
15	A Sound-Sensitive Source of Alpha Oscillations in Human Non-Primary Auditory Cortex. Journal of Neuroscience, 2019, 39, 8679-8689.	1.7	47
16	Maturation of obligatory auditory responses and their neural sources: Evidence from EEG and MEG. Neurolmage, 2011, 58, 630-639.	2.1	46
17	Aging alters envelope representations of speech-like sounds in the inferior colliculus. Neurobiology of Aging, 2019, 73, 30-40.	1.5	44
18	Dynamic Range Adaptation to Spectral Stimulus Statistics in Human Auditory Cortex. Journal of Neuroscience, 2014, 34, 327-331.	1.7	43

#	Article	IF	CITATIONS
19	Dissociable neural imprints of perception and grammar in auditory functional imaging. Human Brain Mapping, 2012, 33, 584-595.	1.9	42
20	Statistical context shapes stimulus-specific adaptation in human auditory cortex. Journal of Neurophysiology, 2015, 113, 2582-2591.	0.9	40
21	Neural Signatures of the Processing of Temporal Patterns in Sound. Journal of Neuroscience, 2018, 38, 5466-5477.	1.7	39
22	Ageing affects dual encoding of periodicity and envelope shape in rat inferior colliculus neurons. European Journal of Neuroscience, 2017, 45, 299-311.	1.2	38
23	Syntactic and auditory spatial processing in the human temporal cortex: An MEG study. Neurolmage, 2011, 57, 624-633.	2.1	37
24	Neural signatures of temporal regularity processing in sounds differ between younger and older adults. Neurobiology of Aging, 2019, 83, 73-85.	1.5	34
25	Slowâ€delta phase concentration marks improved temporal expectations based on the passage of time. Psychophysiology, 2015, 52, 910-918.	1.2	33
26	Neural Microstates Govern Perception of Auditory Input without Rhythmic Structure. Journal of Neuroscience, 2016, 36, 860-871.	1.7	33
27	Auditory filter width affects response magnitude but not frequency specificity in auditory cortex. Hearing Research, 2013, 304, 128-136.	0.9	32
28	Processing of complex distracting sounds in school-aged children and adults: evidence from EEG and MEG data. Frontiers in Psychology, 2013, 4, 717.	1.1	31
29	Selective Attention to Temporal Features on Nested Time Scales. Cerebral Cortex, 2015, 25, 450-459.	1.6	30
30	What can we learn about beat perception by comparing brain signals and stimulus envelopes?. PLoS ONE, 2017, 12, e0172454.	1.1	30
31	Attentional state modulates the effect of an irrelevant stimulus dimension on perception Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 89-105.	0.7	25
32	Violation of syntax and prosodyâ€"Disentangling their contributions to the early left anterior negativity (ELAN). Neuroscience Letters, 2011, 490, 116-120.	1.0	21
33	Cortical Responses to the Amplitude Envelopes of Sounds Change with Age. Journal of Neuroscience, 2021, 41, 5045-5055.	1.7	19
34	Temporal Expectation Modulates the Cortical Dynamics of Short-Term Memory. Journal of Neuroscience, 2018, 38, 7428-7439.	1.7	17
35	A Precluding Role of Low-Frequency Oscillations for Auditory Perception in a Continuous Processing Mode. Journal of Neuroscience, 2012, 32, 17525-17527.	1.7	16
36	Neural Responses and Perceptual Sensitivity to Sound Depend on Sound-Level Statistics. Scientific Reports, 2020, 10, 9571.	1.6	16

#	Article	IF	CITATIONS
37	Supplementary motor area activations predict individual differences in temporal-change sensitivity and its illusory distortions. Neurolmage, 2014, 101, 370-379.	2.1	15
38	Sensitivity of rat inferior colliculus neurons to frequency distributions. Journal of Neurophysiology, 2015, 114, 2941-2954.	0.9	15
39	Dynamics of spontaneous alpha activity correlate with language ability in young children. Behavioural Brain Research, 2019, 359, 56-65.	1.2	15
40	The effect of aging, Parkinson's disease, and exogenous dopamine on the neural response associated with auditory regularity processing. Neurobiology of Aging, 2020, 89, 71-82.	1.5	13
41	Pupil Dilation Is Sensitive to Semantic Ambiguity and Acoustic Degradation. Trends in Hearing, 2020, 24, 233121652096406.	0.7	13
42	Simultaneous EEG-fMRI brain signatures of auditory cue utilization. Frontiers in Neuroscience, 2014, 8, 137.	1.4	12
43	Absorption and Enjoyment During Listening to Acoustically Masked Stories. Trends in Hearing, 2020, 24, 233121652096785.	0.7	11
44	Differential Plasticity in Auditory and Prefrontal Cortices, and Cognitive-Behavioral Deficits Following Noise-Induced Hearing Loss. Neuroscience, 2021, 455, 1-18.	1.1	11
45	Auditory perception and syntactic cognition: brain activityâ€based decoding within and across subjects. European Journal of Neuroscience, 2012, 35, 1488-1496.	1.2	7
46	Predictions interact with missing sensory evidence in semantic processing areas. Human Brain Mapping, 2016, 37, 704-716.	1.9	5
47	Revisiting the Contribution of Auditory Cortex to Frequency-Following Responses. Journal of Neuroscience, 2017, 37, 5218-5220.	1.7	4
48	A novel approach to investigate subcortical and cortical sensitivity to temporal structure simultaneously. Hearing Research, 2020, 398, 108080.	0.9	3