Donald K Blumenthal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6517785/publications.pdf

Version: 2024-02-01

65 papers

2,510 citations

28 h-index 189892 50 g-index

68 all docs 68 docs citations

68 times ranked 1860 citing authors

#	Article	IF	CITATIONS
1	Activation of skeletal muscle myosin light chain kinase by calcium(2+) and calmodulin. Biochemistry, 1980, 19, 5608-5614.	2.5	331
2	Identification of the calmodulin-binding domain of skeletal muscle myosin light chain kinase Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 3187-3191.	7.1	310
3	Interaction of calmodulin and a calmodulin-binding peptide from myosin light chain kinase: major spectral changes in both occur as the result of complex formation. Biochemistry, 1985, 24, 8152-8157.	2.5	142
4	Effects of pH, ionic strength, and temperature on activation by calmodulin and catalytic activity of myosin light-chain kinase. Biochemistry, 1982, 21, 2386-2391.	2.5	118
5	Amino acid sequence of an active fragment of rabbit skeletal muscle myosin light chain kinase. Biochemistry, 1985, 24, 6028-6037.	2.5	115
6	Evidence for domain organization within the 61-kDa calmodulin-dependent cyclic nucleotide phosphodiesterase from bovine brain. Biochemistry, 1991, 30, 7931-7940.	2.5	87
7	A new crystal form of human acetylcholinesterase for exploratory room-temperature crystallography studies. Chemico-Biological Interactions, 2019, 309, 108698.	4.0	82
8	Regulation of contraction by myosin phosphorylation. Biochemical Pharmacology, 1980, 29, 2537-2543.	4.4	66
9	Cellular and morphological changes during neointimal hyperplasia development in a porcine arteriovenous graft model. Nephrology Dialysis Transplantation, 2007, 22, 3139-3146.	0.7	64
10	PDGFâ€induced proliferation in human arterial and venous smooth muscle cells: Molecular basis for differential effects of PDGF isoforms. Journal of Cellular Biochemistry, 2011, 112, 289-298.	2.6	59
11	Conformational Differences Among Solution Structures of the Type Iα, IIα and IIβ Protein Kinase A Regulatory Subunit Homodimers: Role of the Linker Regions. Journal of Molecular Biology, 2004, 337, 1183-1194.	4.2	56
12	Differential Effects of Substrate on Type I and Type II PKA Holoenzyme Dissociation. Biochemistry, 2004, 43, 5629-5636.	2.5	55
13	Localization and quaternary structure of the PKA $Rl\hat{l}^2$ holoenzyme. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12443-12448.	7.1	54
14	Myosin light chain kinases and myosin phosphorylation in skeletal muscle. Advances in Enzyme Regulation, 1985, 23, 123-140.	2.6	50
15	Antibody-Mediated Fluorescence Enhancement Based on Shifting the Intramolecular Dimer .dblarw. Monomer Equilibrium of Fluorescent Dyes. Analytical Chemistry, 1994, 66, 1500-1506.	6.5	50
16	C Subunits Binding to the Protein Kinase A RlÎ \pm Dimer Induce a Large Conformational Change. Journal of Biological Chemistry, 2004, 279, 19084-19090.	3.4	44
17	Light chain phosphorylation alters the conformation of skeletal muscle myosin. Biochemical and Biophysical Research Communications, 1980, 93, 209-214.	2.1	42
18	Calmodulin Binding to Myosin Light Chain Kinase Begins at Substoichiometric Ca2+Concentrations: A Small-Angle Scattering Study of Binding and Conformational Transitionsâ€. Biochemistry, 1998, 37, 17810-17817.	2.5	39

#	Article	IF	CITATIONS
19	PKA RIα Homodimer Structure Reveals an Intermolecular Interface with Implications for Cooperative cAMP Binding and Carney Complex Disease. Structure, 2014, 22, 59-69.	3.3	37
20	[10] Preparation and properties of the calmodulin-binding domain of skeletal muscle myosin light chain kinase. Methods in Enzymology, 1987, 139, 115-126.	1.0	35
21	Mechanism of Epac Activation. Journal of Biological Chemistry, 2009, 284, 23644-23651.	3.4	35
22	Solution Scattering Reveals Large Differences in the Global Structures of Type II Protein Kinase A Isoforms. Journal of Molecular Biology, 2006, 357, 880-889.	4.2	34
23	A kinase interacting protein (AKIP1) is a key regulator of cardiac stress. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E387-96.	7.1	33
24	Proteins at Work. Journal of Biological Chemistry, 2010, 285, 36121-36128.	3.4	32
25	Efficacy of local dipyridamole therapy in a porcine model of arteriovenous graft stenosis. Kidney International, 2006, 69, 2179-2185.	5.2	31
26	Synthetic peptides based on the calmodulin-binding domain of myosin light chain kinase inhibit activation of other calmodulin-dependent enzymes. Biochemical and Biophysical Research Communications, 1988, 156, 860-865.	2.1	29
27	Characterization of the Regulatory Domain of the \hat{I}^3 -Subunit of Phosphorylase Kinase. Journal of Biological Chemistry, 1995, 270, 22283-22289.	3.4	29
28	Differential effects of imatinib on PDGFâ€induced proliferation and PDGF receptor signaling in human arterial and venous smooth muscle cells. Journal of Cellular Biochemistry, 2006, 99, 1553-1563.	2.6	29
29	In vivo evaluation of the delivery and efficacy of a sirolimus-laden polymer gel for inhibition of hyperplasia in a porcine model of arteriovenous hemodialysis graft stenosis. Journal of Controlled Release, 2012, 160, 459-467.	9.9	29
30	Identification of the Substrate and Pseudosubstrate Binding Sites of Phosphorylase Kinase \hat{I}^3 -Subunit. Journal of Biological Chemistry, 1995, 270, 7183-7188.	3.4	26
31	Common components of patch-clamp internal recording solutions can significantly affect protein kinase A activity. Brain Research, 1999, 828, 169-173.	2.2	26
32	Rational design, synthesis, and evaluation of uncharged, "smart―bis-oxime antidotes of organophosphate-inhibited human acetylcholinesterase. Journal of Biological Chemistry, 2020, 295, 4079-4092.	3.4	24
33	Troponin I Inhibitory Peptide (96â^1115) Has an Extended Conformation When Bound to Skeletal Muscle Troponin C. Biochemistry, 1999, 38, 6911-6917.	2.5	23
34	Isoform Specific Differences in Binding of a Dual-Specificity A-Kinase Anchoring Protein to Type I and Type II Regulatory Subunits of PKAâ€. Biochemistry, 2003, 42, 5754-5763.	2.5	23
35	Mechanism of Dipyridamole's Action in Inhibition of Venous and Arterial Smooth Muscle Cell Proliferation. Basic and Clinical Pharmacology and Toxicology, 2006, 99, 431-439.	2.5	23
36	The Conformationally Dynamic C Helix of the Rlα Subunit of Protein Kinase A Mediates Isoform-specific Domain Reorganization upon C Subunit Binding. Journal of Biological Chemistry, 2005, 280, 35521-35527.	3.4	21

#	Article	IF	Citations
37	Sensing Domain Dynamics in Protein Kinase A-Iα Complexes by Solution X-ray Scattering. Journal of Biological Chemistry, 2009, 284, 35916-35925.	3.4	21
38	Defective internal allosteric network imparts dysfunctional ATP/substrate-binding cooperativity in oncogenic chimera of protein kinase A. Communications Biology, 2021, 4, 321.	4.4	21
39	Structure of a PKA RIα Recurrent Acrodysostosis Mutant Explains Defective cAMP-Dependent Activation. Journal of Molecular Biology, 2016, 428, 4890-4904.	4.2	19
40	Longitudinal Assessment of Hyperplasia Using Magnetic Resonance Imaging without Contrast in a Porcine Arteriovenous Graft Model. Academic Radiology, 2009, 16, 96-107.	2.5	17
41	Limitations in current acetylcholinesterase structure–based design of oxime antidotes for organophosphate poisoning. Annals of the New York Academy of Sciences, 2016, 1378, 41-49.	3.8	17
42	Multi-state recognition pathway of the intrinsically disordered protein kinase inhibitor by protein kinase A. ELife, 2020, 9, .	6.0	16
43	Evaluation of histological techniques for quantifying haemodialysis arteriovenous (AV) graft hyperplasia*. Nephrology Dialysis Transplantation, 2006, 21, 3172-3179.	0.7	14
44	Productive reorientation of a bound oxime reactivator revealed in room temperature X-ray structures of native and VX-inhibited human acetylcholinesterase. Journal of Biological Chemistry, 2019, 294, 10607-10618.	3.4	13
45	Properties of a monoclonal antibody directed to the calmodulin-binding domain of rabbit skeletal muscle myosin light chain kinase. Biochemistry, 1987, 26, 5885-5890.	2.5	11
46	Activation and Inhibition of Phosphorylase Kinase by Monospecific Antibodies Raised against Peptides from the Regulatory Domain of the \hat{I}^3 -Subunit. Journal of Biological Chemistry, 1996, 271, 21126-21133.	3.4	11
47	An N-terminally truncated form of cyclic GMP–dependent protein kinase lα (PKG lα) is monomeric and autoinhibited and provides a model for activation. Journal of Biological Chemistry, 2018, 293, 7916-7929.	3.4	11
48	Different signaling responses to anti-proliferative agents in human aortic and venous smooth muscle cells. Journal of Cellular Biochemistry, 2006, 99, 835-844.	2.6	9
49	Covalent inhibition of hAChE by organophosphates causes homodimer dissociation through long-range allosteric effects. Journal of Biological Chemistry, 2021, 297, 101007.	3.4	8
50	The PKA regulatory subunit from yeast forms a homotetramer: Low-resolution structure of the N-terminal oligomerization domain. Journal of Structural Biology, 2016, 193, 141-154.	2.8	7
51	Prevention of Venous Neointimal Hyperplasia by a Multitarget Receptor Tyrosine Kinase Inhibitor. Journal of Vascular Research, 2015, 52, 244-256.	1.4	6
52	The Roles of the RIIÎ ² Linker and N-terminal Cyclic Nucleotide-binding Domain in Determining the Unique Structures of the Type IIÎ ² Protein Kinase A. Journal of Biological Chemistry, 2014, 289, 28505-28512.	3.4	5
53	Antipeptide Antibodies as Probes of Subunit-Dependent Structural Changes in the Regulatory Domain of the Gamma-Subunit of Phosphorylase Kinase. Biochemical and Biophysical Research Communications, 1997, 230, 179-183.	2.1	4
54	Adaptation of the Protein Kinase Filter Paper Assay to a 96-Well Microtiter Format. Analytical Biochemistry, 1999, 267, 235-238.	2.4	4

#	Article	IF	CITATIONS
55	Differential gene expression patterns in vein regions susceptible versus resistant to neointimal hyperplasia. Physiological Genomics, 2018, 50, 615-627.	2.3	4
56	Development and characterization of fluorescently-labeled myosin light chain kinase calmodulin-binding domain peptides. Molecular and Cellular Biochemistry, 1993, 127-128, 45-50.	3.1	2
57	Board 391 - Research Abstract Development and Construct Validation of the Interprofessional Attitudes Scale (IPAS) for Assessing the Impact of Interprofessional Simulations (Submission #1233). Simulation in Healthcare, 2013, 8, 571-572.	1.2	1
58	Aberrant Soluble Epoxide Hydrolase and Oxylipin Levels in a Porcine Arteriovenous Graft Stenosis Model. Journal of Vascular Research, 2014, 51, 269-282.	1.4	1
59	ORGANIZATION OF MYOSIN LIGHT CHAIN KINASE FROM RABBIT SKELETAL MUSCLE. , 1987, , 494-504.		1
60	Architecture of the PKA RIIÎ ² Holoenzyme. FASEB Journal, 2009, 23, 709.11.	0.5	0
61	Resolving the structure of Bcy1, the Regulatory Subunit of Yeast Protein Kinase A. FASEB Journal, 2012, 26, 768.3.	0.5	O
62	Development and characterization of fluorescently-labeled myosin light chain kinase calmodulin-binding domain peptides., 1993,, 45-50.		0
63	The Effect of Organophosphate (OP)â€Induced Structural Changes in Acetylcholinesterase on Kinetics of OP Inhibition and Oxime Reactivation. FASEB Journal, 2018, 32, 526.40.	0.5	0
64	Impact of Organophosphate (OP) Conjugation on Structure and Dynamics of Human Acetylcholinesterase. FASEB Journal, 2018, 32, 527.8.	0.5	0
65	Dynamics of Organophosphateâ€Induced Structural Changes in Acetylcholinesterase Revealed by Timeâ€Resolved Smallâ€Angle Xâ€Ray Scattering and Inelastic Neutron Scattering. FASEB Journal, 2018, 32, 527.7.	0.5	0