
## Eve-Isabelle Pécheur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6517644/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Heparanase-1 is upregulated by hepatitis C virus and favors its replication. Journal of Hepatology, 2022, 77, 29-41.                                                                                                            | 1.8 | 6         |
| 2  | HCV Virology. , 2021, , 1-44.                                                                                                                                                                                                   |     | 0         |
| 3  | Molecular Crosstalk between the Hepatitis C Virus and the Extracellular Matrix in Liver Fibrogenesis and Early Carcinogenesis. Cancers, 2021, 13, 2270.                                                                         | 1.7 | 6         |
| 4  | Circulating micro-RNAs as biomarkers of liver fibrosis progression in hepatitis C<br>virus/HIV-1-co-infected patients: a â€~miR'-velous opportunity of early diagnosis?. Aids, 2021, 35, 1499-1500.                             | 1.0 | 0         |
| 5  | Impact of Gold Nanoparticles on the Functions of Macrophages and Dendritic Cells. Cells, 2021, 10, 96.                                                                                                                          | 1.8 | 22        |
| 6  | Altered BMP2/4 Signaling in Stem Cells and Their Niche: Different Cancers but Similar Mechanisms, the<br>Example of Myeloid Leukemia and Breast Cancer. Frontiers in Cell and Developmental Biology, 2021, 9,<br>787989.        | 1.8 | 6         |
| 7  | First description of a compensatory xylosyltransferase I induction observed after an antifibrotic<br>UDP-treatment of normal human dermal fibroblasts. Biochemical and Biophysical Research<br>Communications, 2019, 512, 7-13. | 1.0 | 4         |
| 8  | Innovative particle standards and long-lived imaging for 2D and 3D dSTORM. Scientific Reports, 2019, 9, 17967.                                                                                                                  | 1.6 | 9         |
| 9  | Hepatitis C virus infection propagates through interactions between Syndecan-1 and CD81 and impacts the hepatocyte glycocalyx. Cellular Microbiology, 2017, 19, e12711.                                                         | 1.1 | 31        |
| 10 | The Synthetic Antiviral Drug Arbidol Inhibits Globally Prevalent Pathogenic Viruses. Journal of Virology, 2016, 90, 3086-3092.                                                                                                  | 1.5 | 133       |
| 11 | Virus Optical Imaging: Far-Red Fluorescent Lipid-Polymer Probes for an Efficient Labeling of Enveloped<br>Viruses (Adv. Healthcare Mater. 16/2016). Advanced Healthcare Materials, 2016, 5, 2031-2031.                          | 3.9 | 1         |
| 12 | Farâ€Red Fluorescent Lipidâ€Polymer Probes for an Efficient Labeling of Enveloped Viruses. Advanced<br>Healthcare Materials, 2016, 5, 2032-2044.                                                                                | 3.9 | 7         |
| 13 | Glutathione peroxidase 4 is reversibly induced by HCV to control lipid peroxidation and to increase virion infectivity. Gut, 2016, 65, 144-154.                                                                                 | 6.1 | 45        |
| 14 | Hepatitis C Virus Envelope Glycoprotein E1 Forms Trimers at the Surface of the Virion. Journal of Virology, 2015, 89, 10333-10346.                                                                                              | 1.5 | 59        |
| 15 | Analysis of Serine Codon Conservation Reveals Diverse Phenotypic Constraints on Hepatitis C Virus<br>Glycoprotein Evolution. Journal of Virology, 2014, 88, 667-678.                                                            | 1.5 | 2         |
| 16 | In vitro infection of primary human hepatocytes by HCV-positive sera: insights on a highly relevant model. Gut, 2014, 63, 1490-1500.                                                                                            | 6.1 | 19        |
| 17 | Curcumin against hepatitis C virus infection: spicing up antiviral therapies with â€~nutraceuticals'?. Gut, 2014, 63, 1035-1037.                                                                                                | 6.1 | 15        |
| 18 | Arbidol as a broad-spectrum antiviral: An update. Antiviral Research, 2014, 107, 84-94.                                                                                                                                         | 1.9 | 375       |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Benzhydrylpiperazine compounds inhibit cholesterol-dependent cellular entry of hepatitis C virus.<br>Antiviral Research, 2014, 109, 141-148.                                                                                               | 1.9 | 16        |
| 20 | Arbidol inhibits viral entry by interfering with clathrin-dependent trafficking. Antiviral Research, 2013, 100, 215-219.                                                                                                                   | 1.9 | 72        |
| 21 | Silibinin inhibits hepatitis C virus entry into hepatocytes by hindering clathrin-dependent trafficking.<br>Cellular Microbiology, 2013, 15, n/a-n/a.                                                                                      | 1.1 | 73        |
| 22 | Lipids ‒ A key for hepatitis C virus entry and a potential target for antiviral strategies. Biochimie, 2013,<br>95, 96-102.                                                                                                                | 1.3 | 31        |
| 23 | Phenothiazines Inhibit Hepatitis C Virus Entry, Likely by Increasing the Fluidity of Cholesterol-Rich<br>Membranes. Antimicrobial Agents and Chemotherapy, 2013, 57, 2571-2581.                                                            | 1.4 | 48        |
| 24 | Very-Low-Density Lipoprotein (VLDL)-Producing and Hepatitis C Virus-Replicating HepG2 Cells Secrete<br>No More Lipoviroparticles than VLDL-Deficient Huh7.5 Cells. Journal of Virology, 2013, 87, 5065-5080.                               | 1.5 | 34        |
| 25 | Silymarin for HCV infection. Antiviral Therapy, 2013, 18, 141-147.                                                                                                                                                                         | 0.6 | 55        |
| 26 | Lipoprotein Receptors and Lipid Enzymes in Hepatitis C Virus Entry and Early Steps of Infection.<br>Scientifica, 2012, 2012, 1-11.                                                                                                         | 0.6 | 8         |
| 27 | Targeting Cell Entry of Enveloped Viruses as an Antiviral Strategy. Molecules, 2011, 16, 221-250.                                                                                                                                          | 1.7 | 80        |
| 28 | Differential In Vitro Effects of Intravenous versus Oral Formulations of Silibinin on the HCV Life<br>Cycle and Inflammation. PLoS ONE, 2011, 6, e16464.                                                                                   | 1.1 | 62        |
| 29 | Identification of a Functional, CRM-1-Dependent Nuclear Export Signal in Hepatitis C Virus Core<br>Protein. PLoS ONE, 2011, 6, e25854.                                                                                                     | 1.1 | 28        |
| 30 | Benzophenone-containing fatty acids and their related photosensitive fluorescent new probes:<br>Design, physico-chemical properties and preliminary functional investigations. Bioorganic and<br>Medicinal Chemistry, 2011, 19, 7464-7473. | 1.4 | 5         |
| 31 | Mechanism of Inhibition of Enveloped Virus Membrane Fusion by the Antiviral Drug Arbidol. PLoS ONE, 2011, 6, e15874.                                                                                                                       | 1.1 | 106       |
| 32 | Lipoprotein Lipase Inhibits Hepatitis C Virus (HCV) Infection by Blocking Virus Cell Entry. PLoS ONE, 2011, 6, e26637.                                                                                                                     | 1.1 | 48        |
| 33 | Multiple effects of silymarin on the hepatitis C virus lifecycle. Hepatology, 2010, 51, 1912-1921.                                                                                                                                         | 3.6 | 191       |
| 34 | Morphological Characterization and Fusion Properties of Triglyceride-rich Lipoproteins Obtained<br>from Cells Transduced with Hepatitis C Virus Glycoproteins. Journal of Biological Chemistry, 2010,<br>285, 25802-25811.                 | 1.6 | 13        |
| 35 | Characterization of hepatitis C virus pseudoparticles by cryo-transmission electron microscopy using<br>functionalized magnetic nanobeads. Journal of General Virology, 2010, 91, 1919-1930.                                               | 1.3 | 26        |
| 36 | Hepatitis C Virus Hypervariable Region 1 Modulates Receptor Interactions, Conceals the CD81 Binding<br>Site, and Protects Conserved Neutralizing Epitopes. Journal of Virology, 2010, 84, 5751-5763.                                       | 1.5 | 201       |

Eve-Isabelle Pécheur

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Low pH-dependent Hepatitis C Virus Membrane Fusion Depends on E2 Integrity, Target Lipid<br>Composition, and Density of Virus Particles. Journal of Biological Chemistry, 2009, 284, 17657-17667.                                | 1.6 | 79        |
| 38 | Characterization of Lassa Virus Cell Entry and Neutralization with Lassa Virus Pseudoparticles.<br>Journal of Virology, 2009, 83, 3228-3237.                                                                                     | 1.5 | 51        |
| 39 | The hepatitis C virus and its hepatic environment: a toxic but finely tuned partnership. Biochemical<br>Journal, 2009, 423, 303-314.                                                                                             | 1.7 | 39        |
| 40 | The Exchangeable Apolipoprotein ApoC-I Promotes Membrane Fusion of Hepatitis C Virus. Journal of<br>Biological Chemistry, 2007, 282, 32357-32369.                                                                                | 1.6 | 80        |
| 41 | Transmembrane Domains of Hepatitis C Virus Envelope Glycoproteins: Residues Involved in E1E2<br>Heterodimerization and Involvement of These Domains in Virus Entry. Journal of Virology, 2007, 81,<br>2372-2381.                 | 1.5 | 76        |
| 42 | Characterization of Fusion Determinants Points to the Involvement of Three Discrete Regions of Both<br>E1 and E2 Glycoproteins in the Membrane Fusion Process of Hepatitis C Virus. Journal of Virology,<br>2007, 81, 8752-8765. | 1.5 | 157       |
| 43 | Biochemical Mechanism of Hepatitis C Virus Inhibition by the Broad-Spectrum Antiviral Arbidol.<br>Biochemistry, 2007, 46, 6050-6059.                                                                                             | 1.2 | 80        |
| 44 | Lipids as modulators of membrane fusion mediated by viral fusion proteins. European Biophysics<br>Journal, 2007, 36, 887-899.                                                                                                    | 1.2 | 97        |
| 45 | Arbidol: a broad-spectrum antiviral that inhibits acute and chronic HCV infection. Virology Journal, 2006, 3, 56.                                                                                                                | 1.4 | 77        |
| 46 | Hepatitis C Virus Glycoproteins Mediate Low pH-dependent Membrane Fusion with Liposomes. Journal of Biological Chemistry, 2006, 281, 3909-3917.                                                                                  | 1.6 | 119       |
| 47 | Anchorage of Synthetic Peptides onto Liposomes via Hydrazone and α-Oxo Hydrazone Bonds.<br>Preliminary Functional Investigations. Bioconjugate Chemistry, 2005, 16, 450-457.                                                     | 1.8 | 39        |
| 48 | Peptide-Induced Fusion of Liposomes. , 2002, 199, 31-48.                                                                                                                                                                         |     | 4         |
| 49 | Protein-induced Fusion Can Be Modulated by Target Membrane Lipids through a Structural Switch at the Level of the Fusion Peptide. Journal of Biological Chemistry, 2000, 275, 3936-3942.                                         | 1.6 | 34        |
| 50 | Lipid Headgroup Spacing and Peptide Penetration, but Not Peptide Oligomerization, Modulate<br>Peptide-Induced Fusionâ€. Biochemistry, 1999, 38, 364-373.                                                                         | 1.2 | 29        |
| 51 | Membrane Fusion Induced by 11-mer Anionic and Cationic Peptides: A Structureâ^'Function Studyâ€.<br>Biochemistry, 1998, 37, 2361-2371.                                                                                           | 1.2 | 31        |