
Addolorata Marasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6517590/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons. Journal of Computational Neuroscience, 2012, 33, 207-225.	0.6	119
2	Negative plant soil feedback explaining ring formation in clonal plants. Journal of Theoretical Biology, 2012, 313, 153-161.	0.8	68
3	Market share dynamics using Lotka–Volterra models. Technological Forecasting and Social Change, 2016, 105, 49-62.	6.2	56
4	Vegetation Pattern Formation Due to Interactions Between Water Availability and Toxicity in Plant–Soil Feedback. Bulletin of Mathematical Biology, 2014, 76, 2866-2883.	0.9	51
5	From the modelling of driver's behavior to hydrodynamic models and problems of traffic flow. Nonlinear Analysis: Real World Applications, 2002, 3, 339-363.	0.9	42
6	Continuum Mechanics. Modeling and Simulation in Science, Engineering and Technology, 2010, , .	0.4	38
7	A numerical approach to nonlinear two-point boundary value problems for ODEs. Computers and Mathematics With Applications, 2008, 55, 2476-2489.	1.4	36
8	Scientific Computing with Mathematica $\hat{A}^{\textcircled{B}}$. Modeling and Simulation in Science, Engineering and Technology, 2001, , .	0.4	33
9	Fast and accurate low-dimensional reduction of biophysically detailed neuron models. Scientific Reports, 2012, 2, 928.	1.6	32
10	Synaptic clusters function as odor operators in the olfactory bulb. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8499-8504.	3.3	31
11	Lindstedt-Poincar \tilde{A} method and mathematica applied to the motion of a solid with a fixed point. Computers and Mathematics With Applications, 2000, 40, 333-343.	1.4	29
12	Inter-port interactions in the Le Havre-Hamburg range: A scenario analysis using a nonautonomous Lotka Volterra model. Journal of Transport Geography, 2018, 69, 207-220.	2.3	23
13	Bifurcation analysis for a mean field modelling of tumor and immune system competition. Mathematical and Computer Modelling, 2003, 37, 1131-1142.	2.0	22
14	Modelling competitive interactions and plant–soil feedback in vegetation dynamics. Ricerche Di Matematica, 2020, 69, 553-577.	0.6	20
15	Using Strahler's analysis to reduce up to 200-fold the run time of realistic neuron models. Scientific Reports, 2013, 3, 2934.	1.6	15
16	Second-order effects on the wave propagation in elastic, isotropic, incompressible, and homogeneous media. International Journal of Engineering Science, 2009, 47, 499-511.	2.7	14
17	Glomerular and Mitral-Granule Cell Microcircuits Coordinate Temporal and Spatial Information Processing in the Olfactory Bulb. Frontiers in Computational Neuroscience, 2016, 10, 67.	1.2	14
18	On the acceleration waves in second-order elastic, isotropic, compressible, and homogeneous materials. Mathematical and Computer Modelling, 2009, 49, 1504-1518.	2.0	11

#	Article	IF	CITATIONS
19	Predicting the response of olfactory sensory neurons to odor mixtures from single odor response. Scientific Reports, 2016, 6, 24091.	1.6	11
20	Weathering of a Roman Mosaic—A Biological and Quantitative Study on In Vitro Colonization of Calcareous Tesserae by Phototrophic Microorganisms. PLoS ONE, 2016, 11, e0164487.	1.1	11
21	On the first-order speeds in any directions of acceleration waves in prestressed second-order isotropic, compressible, and homogeneous materials. Mathematical and Computer Modelling, 2009, 49, 1644-1652.	2.0	9
22	Deterministic modeling in scenario forecasting: estimating the effects of two public policies on intergenerational conflict. Quality and Quantity, 2018, 52, 2345-2371.	2.0	8
23	BALANCE LAWS IN CHARGED CONTINUOUS SYSTEMS WITH AN INTERFACE. Mathematical Models and Methods in Applied Sciences, 2002, 12, 77-88.	1.7	7
24	Nonlinear hydrodynamic models of traffic flow in the presence of tollgates. Mathematical and Computer Modelling, 2002, 35, 549-559.	2.0	7
25	Signorini's method for live loads and second-order effects. International Journal of Engineering Science, 2006, 44, 312-324.	2.7	7
26	Water Limitation and Negative Plant-soil Feedback Explain Vegetation Patterns along Rainfall Gradient. Procedia Environmental Sciences, 2013, 19, 139-147.	1.3	7
27	Determining firms׳ utility functions and competitive roles from data on market shares using Lotka–Volterra models. Data in Brief, 2016, 7, 709-713.	0.5	7
28	A mathematical approach to study and forecast racial groups interactions: deterministic modeling and scenario method. Quality and Quantity, 2018, 52, 1929-1956.	2.0	7
29	Balance laws for continua with an interface deduced from multiphase continuous models with a transition layer. International Journal of Engineering Science, 2001, 39, 873-896.	2.7	6
30	Maksutov's cameras and telescopes. International Journal of Engineering Science, 2007, 45, 34-40.	2.7	5
31	Periodic solutions of a 2D-autonomous system using Mathematica®. Mathematical and Computer Modelling, 2007, 45, 681-693.	2.0	5
32	Approximate analytic solution of the Dirichlet problems for Laplace's equation in planar domains by a perturbation method. Computers and Mathematics With Applications, 2012, 63, 60-67.	1.4	3
33	Hoghton's camera and telescope. International Journal of Engineering Science, 2006, 44, 959-972.	2.7	2
34	A mathematical model for the management of a Service Center. Mathematical and Computer Modelling, 2011, 53, 2005-2014.	2.0	2
35	Classical Mechanics with Mathematica $\hat{A}^{\texttt{0}}.$ Modeling and Simulation in Science, Engineering and Technology, 2018, , .	0.4	2
36	Modeling eutrophic lakes: From mass balance laws to ordinary differential equations. International Journal of Geometric Methods in Modern Physics, 2017, 14, 1750151.	0.8	1

#	Article	IF	CITATIONS
37	An analytical solution of stationary hydrodynamic equations of a main-sequence star. International Journal of Geometric Methods in Modern Physics, 2019, 16, 1950120.	0.8	1
38	An Introduction to Mixture Theory. , 2010, , 149-170.		1
39	The Lindstedt-Poincar \tilde{A} $\mbox{\sc C}$ Method. Modeling and Simulation in Science, Engineering and Technology, 2001, , 177-200.	0.4	0
40	Bifurcation in ODEs. Modeling and Simulation in Science, Engineering and Technology, 2001, , 145-175.	0.4	0
41	Stability: The Critical Case. Modeling and Simulation in Science, Engineering and Technology, 2001, , 127-144.	0.4	Ο
42	Wave fronts in second-order elasticity determined by perturbation method applied to the eikonal equation. Continuum Mechanics and Thermodynamics, 2013, 25, 229-242.	1.4	0
43	Tensor Algebra. Modeling and Simulation in Science, Engineering and Technology, 2018, , 17-29.	0.4	0
44	Lagrangian Dynamics. Modeling and Simulation in Science, Engineering and Technology, 2018, , 293-343.	0.4	0
45	A critical overview of stationary solar models based on polytropic gases. International Journal of Geometric Methods in Modern Physics, 2020, 17, 2050084.	0.8	Ο
46	Problems of Stability. Modeling and Simulation in Science, Engineering and Technology, 2001, , 99-125.	0.4	0
47	Poincaré's Perturbation Method. Modeling and Simulation in Science, Engineering and Technology, 2001, , 79-98.	0.4	Ο
48	Linear ODEs with Constant Coefficients. Modeling and Simulation in Science, Engineering and Technology, 2001, , 33-48.	0.4	0
49	Continuous System with a Nonmaterial Interface. Modeling and Simulation in Science, Engineering and Technology, 2010, , 91-111.	0.4	Ο
50	Continua with an Interface and Micromagnetism. Modeling and Simulation in Science, Engineering and Technology, 2010, , 225-255.	0.4	0
51	Introduction to Magnetofluid Dynamics. Modeling and Simulation in Science, Engineering and Technology, 2010, , 205-224.	0.4	Ο
52	Nonlinear Elasticity. Modeling and Simulation in Science, Engineering and Technology, 2010, , 1-66.	0.4	0
53	Electromagnetism in Matter. Modeling and Simulation in Science, Engineering and Technology, 2010, , 171-204.	0.4	0
54	Finite and Infinitesimal Deformations. Modeling and Simulation in Science, Engineering and Technology, 2014, , 83-113.	0.4	0

Addolorata Marasco

#	Article	IF	CITATIONS
55	Fluid Dynamics and Meteorology. Modeling and Simulation in Science, Engineering and Technology, 2014, , 385-428.	0.4	0
56	Symmetry Groups: Solids and Fluids. Modeling and Simulation in Science, Engineering and Technology, 2014, , 179-196.	0.4	0
57	Reduced Morphology Models. , 2014, , 1-14.		0
58	An Overview of Dynamical Systems. Modeling and Simulation in Science, Engineering and Technology, 2018, , 137-160.	0.4	0
59	The Hamilton–Jacobi Theory. Modeling and Simulation in Science, Engineering and Technology, 2018, , 381-397.	0.4	0
60	Impulsive Dynamics. Modeling and Simulation in Science, Engineering and Technology, 2018, , 457-471.	0.4	0
61	An Introduction toÂSpecial Relativity. Modeling and Simulation in Science, Engineering and Technology, 2018, , 569-597.	0.4	Ο
62	Olfactory Sensory Neurons to Odor Stimuli: Mathematical Modeling of the Response. , 2018, , 1-12.		0
63	One-Dimensional Continuous Systems. Modeling and Simulation in Science, Engineering and Technology, 2018, , 539-567.	0.4	Ο
64	Principles of Dynamics. Modeling and Simulation in Science, Engineering and Technology, 2018, , 199-216.	0.4	0
65	Dynamics ofÂaÂRigid Body. Modeling and Simulation in Science, Engineering and Technology, 2018, , 267-291.	0.4	Ο
66	One-Parameter Groups ofÂDiffeomorphisms. Modeling and Simulation in Science, Engineering and Technology, 2018, , 97-106.	0.4	0
67	Hamiltonian Dynamics. Modeling and Simulation in Science, Engineering and Technology, 2018, , 345-380.	0.4	Ο
68	Differentiable Manifolds. Modeling and Simulation in Science, Engineering and Technology, 2018, , 69-96.	0.4	0
69	Kinematics ofÂRigid Bodies. Modeling and Simulation in Science, Engineering and Technology, 2018, , 179-198.	0.4	Ο
70	Vector Space and Linear Maps. Modeling and Simulation in Science, Engineering and Technology, 2018, , 3-16.	0.4	0
71	Olfactory Sensory Neurons to Odor Stimuli: Mathematical Modeling of the Response. , 2022, , 2521-2532.		0
72	Reduced Morphology Models. , 2022, , 3007-3018.		0