Pieter De Frenne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6517287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microclimate moderates plant responses to macroclimate warming. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18561-18565.	3.3	523
2	Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proceedings of the United States of America, 2013, 110, 19456-19459.	3.3	464
3	Forest microclimate dynamics drive plant responses to warming. Science, 2020, 368, 772-775.	6.0	385
4	Global buffering of temperatures under forest canopies. Nature Ecology and Evolution, 2019, 3, 744-749.	3.4	374
5	Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology, 2021, 27, 2279-2297.	4.2	330
6	Latitudinal gradients as natural laboratories to infer species' responses to temperature. Journal of Ecology, 2013, 101, 784-795.	1.9	315
7	Advances in Microclimate Ecology Arising from Remote Sensing. Trends in Ecology and Evolution, 2019, 34, 327-341.	4.2	229
8	Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. Journal of Ecology, 2012, 100, 352-365.	1.9	214
9	Cumulative nitrogen input drives species loss in terrestrial ecosystems. Global Ecology and Biogeography, 2011, 20, 803-816.	2.7	194
10	The functional role of temperate forest understorey vegetation in a changing world. Global Change Biology, 2019, 25, 3625-3641.	4.2	165
11	Global environmental change effects on ecosystems: the importance of landâ€use legacies. Global Change Biology, 2016, 22, 1361-1371.	4.2	148
12	Advances in Monitoring and Modelling Climate at Ecologically Relevant Scales. Advances in Ecological Research, 2018, , 101-161.	1.4	146
13	On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos, 2012, 121, 3-19.	1.2	135
14	Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agriculture, Ecosystems and Environment, 2017, 247, 98-111.	2.5	135
15	Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development. Global Change Biology, 2012, 18, 1127-1140.	4.2	124
16	Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Global Change Biology, 2015, 21, 3726-3737.	4.2	124
17	SoilTemp: A global database of nearâ€surface temperature. Global Change Biology, 2020, 26, 6616-6629.	4.2	122
18	Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. Global Ecology and Biogeography, 2019, 28, 1774-1786.	2.7	115

#	Article	IF	CITATIONS
19	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	4.2	113
20	Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient. Global Change Biology, 2011, 17, 3240-3253.	4.2	112
21	Estimates of local biodiversity change over time stand up to scrutiny. Ecology, 2017, 98, 583-590.	1.5	106
22	Global patterns of intraspecific leaf trait responses to elevation. Global Change Biology, 2019, 25, 2485-2498.	4.2	102
23	Global environmental change effects on plant community composition trajectories depend upon management legacies. Global Change Biology, 2018, 24, 1722-1740.	4.2	93
24	Combining Biodiversity Resurveys across Regions to Advance Global Change Research. BioScience, 2017, 67, 73-83.	2.2	89
25	Ecosystem Services from Small Forest Patches in Agricultural Landscapes. Current Forestry Reports, 2016, 2, 30-44.	3.4	86
26	Four decades of post-agricultural forest development have caused major redistributions of soil phosphorus fractions. Oecologia, 2012, 169, 221-234.	0.9	75
27	Weather stations lack forest data. Science, 2016, 351, 234-234.	6.0	72
28	Impact of climate change on alpine vegetation of mountain summits in Norway. Ecological Research, 2017, 32, 579-593.	0.7	71
29	Light accelerates plant responses to warming. Nature Plants, 2015, 1, 15110.	4.7	70
30	Replacements of small- by large-ranged species scale up to diversity loss in Europe's temperate forest biome. Nature Ecology and Evolution, 2020, 4, 802-808.	3.4	67
31	Global patterns and drivers of rainfall partitioning by trees and shrubs. Global Change Biology, 2021, 27, 3350-3357.	4.2	64
32	Low genetic diversity despite multiple introductions of the invasive plant species Impatiens glandulifera in Europe. BMC Genetics, 2015, 16, 103.	2.7	62
33	The use of openâ€ŧop chambers in forests for evaluating warming effects on herbaceous understorey plants. Ecological Research, 2010, 25, 163-171.	0.7	61
34	ForestTemp – Sub anopy microclimate temperatures of European forests. Global Change Biology, 2021, 27, 6307-6319.	4.2	57
35	On the measurement of microclimate. Methods in Ecology and Evolution, 2021, 12, 1397-1410.	2.2	55
36	Early Trajectories of Spontaneous Vegetation Recovery after Intensive Agricultural Land Use. Restoration Ecology, 2010, 18, 379-386.	1.4	53

#	Article	IF	CITATIONS
37	Ecological niche shifts of understorey plants along a latitudinal gradient of temperate forests in northâ€western <scp>E</scp> urope. Global Ecology and Biogeography, 2013, 22, 1130-1140.	2.7	53
38	Observer and relocation errors matter in resurveys of historical vegetation plots. Journal of Vegetation Science, 2018, 29, 812-823.	1.1	51
39	Interregional variation in the floristic recovery of postâ€agricultural forests. Journal of Ecology, 2011, 99, 600-609.	1.9	50
40	GrassPlot – a database of multi-scale plant diversity in Palaearctic grasslands. Phytocoenologia, 2018, 48, 331-347.	1.2	49
41	Understanding context dependency in the response of forest understorey plant communities to nitrogen deposition. Environmental Pollution, 2018, 242, 1787-1799.	3.7	49
42	Effects of soil compaction on growth and survival of tree saplings: A meta-analysis. Basic and Applied Ecology, 2011, 12, 394-402.	1.2	48
43	The abundance of <i>lxodes ricinus</i> ticks depends on tree species composition and shrub cover. Parasitology, 2012, 139, 1273-1281.	0.7	48
44	Life-history traits explain rapid colonization of young post-agricultural forests by understory herbs. Forest Ecology and Management, 2012, 278, 55-62.	1.4	48
45	Effects of temperate agroforestry on yield and quality of different arable intercrops. Agricultural Systems, 2018, 166, 135-151.	3.2	47
46	High ecosystem service delivery potential of small woodlands in agricultural landscapes. Journal of Applied Ecology, 2020, 57, 4-16.	1.9	46
47	Unravelling the effects of temperature, latitude and local environment on the reproduction of forest herbs. Global Ecology and Biogeography, 2009, 18, 641-651.	2.7	44
48	The contribution of patchâ€scale conditions is greater than that of macroclimate in explaining local plant diversity in fragmented forests across <scp>E</scp> urope. Global Ecology and Biogeography, 2015, 24, 1094-1105.	2.7	43
49	Environmental drivers of Ixodes ricinus abundance in forest fragments of rural European landscapes. BMC Ecology, 2017, 17, 31.	3.0	43
50	Experimental assessment of ecological restoration options for compacted forest soils. Ecological Engineering, 2011, 37, 1734-1746.	1.6	42
51	Habitat properties are key drivers of Borrelia burgdorferi (s.l.) prevalence in Ixodes ricinus populations of deciduous forest fragments. Parasites and Vectors, 2018, 11, 23.	1.0	42
52	Species–area relationships in continuous vegetation: Evidence from Palaearctic grasslands. Journal of Biogeography, 2020, 47, 72-86.	1.4	42
53	Light and warming drive forest understorey community development in different environments. Global Change Biology, 2020, 26, 1681-1696.	4.2	42
54	Plant diversity in hedgerows and road verges across Europe. Journal of Applied Ecology, 2020, 57, 1244-1257.	1.9	42

#	Article	IF	CITATIONS
55	Significant effects of temperature on the reproductive output of the forest herb Anemone nemorosa L Forest Ecology and Management, 2010, 259, 809-817.	1.4	41
56	An intraspecific application of the leaf-height-seed ecology strategy scheme to forest herbs along a latitudinal gradient. Ecography, 2011, 34, 132-140.	2.1	41
57	The response of forest plant regeneration to temperature variation along a latitudinal gradient. Annals of Botany, 2012, 109, 1037-1046.	1.4	41
58	Edge influence on understorey plant communities depends on forest management. Journal of Vegetation Science, 2020, 31, 281-292.	1.1	40
59	Maintaining forest cover to enhance temperature buffering under future climate change. Science of the Total Environment, 2022, 810, 151338.	3.9	39
60	Directional turnover towards largerâ€ranged plants over time and across habitats. Ecology Letters, 2022, 25, 466-482.	3.0	39
61	In situ quantification of forage grass root biomass, distribution and diameter classes under two N fertilisation rates. Plant and Soil, 2017, 411, 409-422.	1.8	38
62	Biotic and abiotic drivers of intraspecific trait variation within plant populations of three herbaceous plant species along a latitudinal gradient. BMC Ecology, 2017, 17, 38.	3.0	38
63	Plant and soil microbe responses to light, warming and nitrogen addition in a temperate forest. Functional Ecology, 2018, 32, 1293-1303.	1.7	38
64	Microclimatic edge-to-interior gradients of European deciduous forests. Agricultural and Forest Meteorology, 2021, 311, 108699.	1.9	38
65	The effects of sampling method and vegetation type on the estimated abundance of Ixodes ricinus ticks in forests. Experimental and Applied Acarology, 2011, 54, 285-292.	0.7	37
66	Understorey vegetation shifts following the conversion of temperate deciduous forest to spruce plantation. Forest Ecology and Management, 2013, 289, 363-370.	1.4	37
67	Structural variation of forest edges across Europe. Forest Ecology and Management, 2020, 462, 117929.	1.4	35
68	Plasticity in response to phosphorus and light availability in four forest herbs. Oecologia, 2010, 163, 1021-1032.	0.9	34
69	Benchmarking plant diversity of Palaearctic grasslands and other open habitats. Journal of Vegetation Science, 2021, 32, e13050.	1.1	34
70	Gradients in abundance and diversity of ground dwelling arthropods as a function of distance to tree rows in temperate arable agroforestry systems. Agriculture, Ecosystems and Environment, 2019, 270-271, 114-128.	2.5	33
71	Functional trait variation of forest understorey plant communities across Europe. Basic and Applied Ecology, 2019, 34, 1-14.	1.2	33
72	Temporal changes in forest plant communities at different site types. Applied Vegetation Science, 2013, 16, 237-247.	0.9	32

#	Article	IF	CITATIONS
73	Forest understorey communities respond strongly to light in interaction with forest structure, but not to microclimate warming. New Phytologist, 2022, 233, 219-235.	3.5	32
74	Forest herbs in the face of global change: a single-species-multiple-threats approach for Anemone nemorosa. Plant Ecology and Evolution, 2010, 143, 19-30.	0.3	31
75	A latitudinal gradient in seed nutrients of the forest herb <i>Anemone nemorosa</i> . Plant Biology, 2011, 13, 493-501.	1.8	31
76	Critical phases in the seed development of common juniper (<i>Juniperus communis</i>). Plant Biology, 2013, 15, 210-219.	1.8	31
77	Former land use affects the nitrogen and phosphorus concentrations and biomass of forest herbs. Plant Ecology, 2011, 212, 901-909.	0.7	30
78	Plant movements and climate warming: intraspecific variation in growth responses to nonlocal soils. New Phytologist, 2014, 202, 431-441.	3.5	29
79	Strong negative impacts of whole tree harvesting in pine stands on poor, sandy soils: A long-term nutrient budget modelling approach. Forest Ecology and Management, 2015, 356, 101-111.	1.4	29
80	Taxonomic, phylogenetic and functional diversity of understorey plants respond differently to environmental conditions in European forest edges. Journal of Ecology, 2021, 109, 2629-2648.	1.9	28
81	The effects of hemiparasitic plant removal on community structure and seedling establishment in semiâ€natural grasslands. Journal of Vegetation Science, 2015, 26, 409-420.	1.1	27
82	Interacting effects of warming and drought on regeneration and early growth of <i>Acer pseudoplatanus</i> and <i>A.Âplatanoides</i> . Plant Biology, 2015, 17, 52-62.	1.8	27
83	Maternal temperature during seed maturation affects seed germination and timing of bud set in seedlings of European black poplar. Forest Ecology and Management, 2018, 410, 126-135.	1.4	27
84	Contrasting microclimates among hedgerows and woodlands across temperate Europe. Agricultural and Forest Meteorology, 2020, 281, 107818.	1.9	27
85	Rapid thermophilization of understorey plant communities in a 9 yearâ€long temperate forest experiment. Journal of Ecology, 2021, 109, 2434-2447.	1.9	27
86	Impact of an invasive alien plant on litter decomposition along a latitudinal gradient. Ecosphere, 2018, 9, e02097.	1.0	26
87	Prunus serotina unleashed: invader dominance after 70Âyears of forest development. Biological Invasions, 2010, 12, 1113-1124.	1.2	25
88	Experimental assessment of the survival and performance of forest herbs transplanted beyond their range limit. Basic and Applied Ecology, 2012, 13, 10-19.	1.2	25
89	Patterns of phenotypic trait variation in two temperate forest herbs along a broad climatic gradient. Plant Ecology, 2015, 216, 1523-1536.	0.7	25
90	Drivers of carbon stocks in forest edges across Europe. Science of the Total Environment, 2021, 759, 143497.	3.9	25

6

#	Article	IF	CITATIONS
91	Climatic control of forest herb seed banks along a latitudinal gradient. Global Ecology and Biogeography, 2013, 22, 1106-1117.	2.7	24
92	Negative effects of temperature and atmospheric depositions on the seed viability of common juniper (Juniperus communis). Annals of Botany, 2014, 113, 489-500.	1.4	24
93	Latitudinal variation in seeds characteristics of Acer platanoides and A. pseudoplatanus. Plant Ecology, 2014, 215, 911-925.	0.7	23
94	ClimPlant: Realized climatic niches of vascular plants in European forest understoreys. Global Ecology and Biogeography, 2021, 30, 1183-1190.	2.7	23
95	The European Forest Plant Species List (EuForPlant): Concept and applications. Journal of Vegetation Science, 2022, 33, .	1.1	23
96	Litter quality and stream physicochemical properties drive global invertebrate effects on instream litter decomposition. Biological Reviews, 2022, 97, 2023-2038.	4.7	23
97	Uncertainty in thermal tolerances and climatic debt. Nature Climate Change, 2012, 2, 636-637.	8.1	21
98	Where does the community start, and where does it end? Including the seed bank to reassess forest herb layer responses to the environment. Journal of Vegetation Science, 2017, 28, 424-435.	1.1	21
99	A modelâ€based approach to studying changes in compositional heterogeneity. Methods in Ecology and Evolution, 2014, 5, 156-164.	2.2	19
100	Complementary distribution patterns of arthropod detritivores (woodlice and millipedes) along forest edgeâ€ŧoâ€ŧnterior gradients. Insect Conservation and Diversity, 2016, 9, 456-469.	1.4	19
101	Plant species identity and soil characteristics determine rhizosphere soil bacteria community composition in European temperate forests. FEMS Microbiology Ecology, 2019, 95, .	1.3	19
102	Fineâ€grain beta diversity of Palaearctic grassland vegetation. Journal of Vegetation Science, 2021, 32, e13045.	1.1	18
103	Latitudinal variation in seed predation correlates with latitudinal variation in seed defensive and nutritional traits in a widespread oak species. Annals of Botany, 2020, 125, 881-890.	1.4	17
104	Effects of enhanced nitrogen inputs and climate warming on a forest understorey plant assessed by transplant experiments along a latitudinal gradient. Plant Ecology, 2014, 215, 899-910.	0.7	16
105	Tree species mixing can amplify microclimate offsets in young forest plantations. Journal of Applied Ecology, 2022, 59, 1428-1439.	1.9	16
106	Impacts of warming and changes in precipitation frequency on the regeneration of two Acer species. Flora: Morphology, Distribution, Functional Ecology of Plants, 2015, 214, 24-33.	0.6	15
107	Spatially combining wood production and recreation with biodiversity conservation. Biodiversity and Conservation, 2017, 26, 3213-3239.	1.2	15
108	Using archived television video footage to quantify phenology responses to climate change. Methods in Ecology and Evolution, 2018, 9, 1874-1882.	2.2	15

#	Article	IF	CITATIONS
109	Small scale environmental variation modulates plant defence syndromes of understorey plants in deciduous forests of Europe. Global Ecology and Biogeography, 2021, 30, 205-219.	2.7	15
110	Individualistic responses of forest herb traits to environmental change. Plant Biology, 2020, 22, 601-614.	1.8	14
111	Divergent regeneration responses of two closely related tree species to direct abiotic and indirect biotic effects of climate change. Forest Ecology and Management, 2015, 342, 21-29.	1.4	13
112	Increasing liana frequency in temperate European forest understories is driven by ivy. Frontiers in Ecology and the Environment, 2020, 18, 550-557.	1.9	13
113	The need for an understory decision support system for temperate deciduous forest management. Forest Ecology and Management, 2021, 480, 118634.	1.4	13
114	Forest understorey plant responses to longâ€ŧerm experimental warming, light and nitrogen addition. Plant Biology, 2021, 23, 1051-1062.	1.8	13
115	No genetic erosion after five generations for Impatiens glandulifera populations across the invaded range in Europe. BMC Genetics, 2019, 20, 20.	2.7	12
116	Innovative empirical approaches for inferring climateâ€warming impacts on plants in remote areas. New Phytologist, 2015, 205, 1015-1021.	3.5	11
117	Climate warming and atmospheric deposition affect seed viability of common juniper (<i>Juniperus) Tj ETQq1 1 0 135-144.</i>	.784314 r 0.7	gBT /Overloc 11
118	Transgenerational effects in asexually reproduced offspring of Populus. PLoS ONE, 2018, 13, e0208591.	1.1	11
119	Cascading effects of canopy mortality drive longâ€ŧerm changes in understorey diversity in temperate oldâ€growth forests of Europe. Journal of Vegetation Science, 2019, 30, 905-916.	1.1	11
120	MIRRA: A Modular and Cost-Effective Microclimate Monitoring System for Real-Time Remote Applications. Sensors, 2021, 21, 4615.	2.1	11
121	Nutrient fertilization by dogs in periâ€urban ecosystems. Ecological Solutions and Evidence, 2022, 3, .	0.8	11
122	The phosphorus legacy of former agricultural land use can affect the production of germinable seeds in forest herbs. Ecoscience, 2010, 17, 365-371.	0.6	10
123	Acido―and neutrophilic temperate forest plants display distinct shifts in ecological pH niche across northâ€western Europe. Ecography, 2016, 39, 1164-1175.	2.1	10
124	Regeneration responses to climate and land-use change of four subtropical tree species of the southern Central Andes. Forest Ecology and Management, 2018, 417, 110-121.	1.4	10
125	Desiccation resistance determines distribution of woodlice along forest edge-to-interior gradients. European Journal of Soil Biology, 2018, 85, 1-3.	1.4	10
126	Local soil characteristics determine the microbial communities under forest understorey plants along a latitudinal gradient. Basic and Applied Ecology, 2019, 36, 34-44.	1.2	10

#	Article	IF	CITATIONS
127	Edge effects on the realised soil seed bank along microclimatic gradients in temperate European forests. Science of the Total Environment, 2021, 798, 149373.	3.9	10
128	Unveil the unseen: Using LiDAR to capture timeâ€lag dynamics in the herbaceous layer of European temperate forests. Journal of Ecology, 2022, 110, 282-300.	1.9	10
129	Species distribution models and a 60â€yearâ€old transplant experiment reveal inhibited forest plant range shifts under climate change. Journal of Biogeography, 2022, 49, 537-550.	1.4	10
130	Logging operations in pine stands in Belgium with additional harvest of woody biomass: yield, economics, and energy balance. Canadian Journal of Forest Research, 2015, 45, 987-997.	0.8	9
131	Larger direct than indirect effects of multiple environmental changes on leaf nitrogen of forest herbs. Plant and Soil, 2019, 445, 199-216.	1.8	9
132	Designing countrywide and regional microclimate networks. Global Ecology and Biogeography, 2021, 30, 1168-1174.	2.7	9
133	The combined effects of climate and canopy cover changes on understorey plants of the Hyrcanian forest biodiversity hotspot in northern Iran. Global Change Biology, 2022, 28, 1103-1118.	4.2	9
134	Effects of snow cover-induced microclimate warming on soil physicochemical and biotic properties. Geoderma, 2022, 423, 115983.	2.3	9
135	Hedging against biodiversity loss: Forest herbs' performance in hedgerows across temperate Europe. Journal of Vegetation Science, 2020, 31, 817-829.	1.1	8
136	Biological flora of Central Europe: Impatiens glandulifera Royle. Perspectives in Plant Ecology, Evolution and Systematics, 2021, 50, 125609.	1.1	8
137	The use of photos to investigate ecological change. Journal of Ecology, 2022, 110, 1220-1236.	1.9	8
138	Interactive effects of drought and edge exposure on old-growth forest understory species. Landscape Ecology, 2022, 37, 1839-1853.	1.9	8
139	Biological Flora of the British Isles: <i>Milium effusum</i> . Journal of Ecology, 2017, 105, 839-858.	1.9	7
140	Atmospheric nitrogen deposition on petals enhances seed quality of the forest herb <i>Anemone nemorosa</i> . Plant Biology, 2018, 20, 619-626.	1.8	7
141	Plant–soil feedbacks of forest understorey plants transplanted in nonlocal soils along a latitudinal gradient. Plant Biology, 2019, 21, 677-687.	1.8	7
142	Earlier onset of flowering and increased reproductive allocation of an annual invasive plant in the north of its novel range. Annals of Botany, 2020, 126, 1005-1016.	1.4	7
143	Increased temperatures negatively affect <i>Juniperus communis</i> seeds: evidence from transplant experiments along a latitudinal gradient. Plant Biology, 2016, 18, 417-422.	1.8	6
144	The coâ€existence of multiple oak leaf flushes contributes to the large withinâ€ŧree variation in chemistry, insect attack and pathogen infection. New Phytologist, 2022, 235, 1615-1628.	3.5	6

#	Article	IF	CITATIONS
145	Competition mediates understorey species range shifts under climate change. Journal of Ecology, 2022, 110, 1813-1825.	1.9	6
146	The relationship between elevation, soil temperatures, soil chemical characteristics, and green coffee bean quality and biochemistry in southwest Ethiopia. Agronomy for Sustainable Development, 2022, 42,	2.2	6
147	Forest herbs show species-specific responses to variation in light regime on sites with contrasting soil acidity: An experiment mimicking forest conversion scenarios. Basic and Applied Ecology, 2014, 15, 316-325.	1.2	5
148	Factors affecting grazing preference by sheep in a breeding population of tall fescue (<i>Festuca) Tj ETQq0 0 0</i>	rgBT /Over 1.2	lock 10 Tf 50
149	Phenology and growth of Fagus sylvatica and Quercus robur seedlings in response to temperature variation in the parental versus offspring generation. Plant Biology, 2020, 22, 113-122.	1.8	5
150	Soil seed bank responses to edge effects in temperate European forests. Global Ecology and Biogeography, 2022, 31, 1877-1893.	2.7	5
151	Reply to Harwood et al.: Thermophilization estimation is robust to the scale of species distribution data. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1166-E1166.	3.3	4
152	Germination responses to light of four Neotropical forest tree species along an elevational gradient in the southern Central Andes. Ecological Research, 2020, 35, 550-558.	0.7	4
153	Sensitivity to habitat fragmentation across European landscapes in three temperate forest herbs. Landscape Ecology, 2021, 36, 2831-2848.	1.9	4
154	Thermal differences between juveniles and adults increased over time in European forest trees. Journal of Ecology, 2021, 109, 3944-3957.	1.9	4
155	Context matters: the landscape matrix determines the population genetic structure of temperate forest herbs across Europe. Landscape Ecology, 2022, 37, 1365-1384.	1.9	4
156	Initial oak regeneration responses to experimental warming along microclimatic and macroclimatic gradients. Plant Biology, 2022, 24, 745-757.	1.8	4
157	Shade tree canopy cover affects coffee plant traits across elevations in coffee farms in southwest Ethiopia. Nordic Journal of Botany, 2022, 2022, .	0.2	4
158	Negative effects of winter and spring warming on the regeneration of forest spring geophytes. Plant Biology, 2022, 24, 950-959.	1.8	4
159	Forest density and edge effects on soil microbial communities in deciduous forests across Europe. Applied Soil Ecology, 2022, 179, 104586.	2.1	4
160	Latitudinal variation of life-history traits of an exotic and a native impatiens species in Europe. Acta Oecologica, 2017, 81, 40-47.	0.5	3
161	Data collection design for calibration of crop models using practical identifiability analysis. Computers and Electronics in Agriculture, 2021, 190, 106457.	3.7	3
162	Response to Comment on "Forest microclimate dynamics drive plant responses to warming― Science, 2020, 370, .	6.0	3

#	Article	IF	CITATIONS
163	Functional trait variation of <i>Anemone nemorosa</i> along macro―and microclimatic gradients close to the northern range edge. Nordic Journal of Botany, 2022, 2022, .	0.2	3
164	Impact of tree species diversity on throughfall deposition in a young temperate forest plantation. Science of the Total Environment, 2022, 842, 156947.	3.9	3
165	The short term agronomic impact of raising canal water levels in grassland areas: A case study in the Belgian polders. Agriculture, Ecosystems and Environment, 2011, 144, 159-166.	2.5	2
166	Determinants of tree seedling establishment in alpine tundra. Journal of Vegetation Science, 2021, 32, e12948.	1.1	2
167	Effects of latitude and conspecific plant density on insect leaf herbivory in oak saplings and seedlings. American Journal of Botany, 2021, 108, 172-176.	0.8	2
168	Temperature effects on forest understorey plants in hedgerows: a combined warming and transplant experiment. Annals of Botany, 2021, 128, 315-327.	1.4	2
169	"Lianification―or liana invasion – is there a difference?. Frontiers in Ecology and the Environment, 2021, 19, 377-378.	1.9	2
170	Effects of heathland management on seedling recruitment of common juniper (Juniperus communis). Plant Ecology and Evolution, 2020, 153, 188-198.	0.3	2
171	Different effects of warming treatments in forests <i>versus</i> hedgerows on the understorey plant <i>Geum urbanum</i> . Plant Biology, 2022, , .	1.8	2
172	Response to Comment on "Forest microclimate dynamics drive plant responses to warming― Science, 2020, 370, .	6.0	1
173	Biological Flora of the British Isles: Poa nemoralis. Journal of Ecology, 2020, 108, 1750-1774.	1.9	1
174	Fine-grain beta diversity in Palaearctic open vegetation: variability within and between biomes and vegetation types. Vegetation Classification and Survey, 0, 2, 293-304.	0.0	1
175	Reducing competition in forage maize intercropped with tall fescue through herbicides, plant types, and sowing density. Agronomy for Sustainable Development, 2021, 41, 1.	2.2	0