
Lan-Ying Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6516728/publications.pdf Version: 2024-02-01

LAN-YING LEE

#	Article	IF	CITATIONS
1	Characterization of T-Circles and Their Formation Reveal Similarities to Agrobacterium T-DNA Integration Patterns. Frontiers in Plant Science, 2022, 13, .	3.6	3
2	<i>Agrobacterium</i> Tâ€DNA integration in somatic cells does not require the activity of DNA polymerase Î, New Phytologist, 2021, 229, 2859-2872.	7.3	30
3	Agrobacterium VirE2 Protein Modulates Plant Gene Expression and Mediates Transformation From Its Location Outside the Nucleus. Frontiers in Plant Science, 2021, 12, 684192.	3.6	8
4	<i>Agrobacterium-</i> delivered VirE2 interacts with host nucleoporin CG1 to facilitate the nuclear import of VirE2-coated T complex. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26389-26397.	7.1	17
5	Application of Cas12a and nCas9-activation-induced cytidine deaminase for genome editing and as a non-sexual strategy to generate homozygous/multiplex edited plants in the allotetraploid genome of tobacco. Plant Molecular Biology, 2019, 101, 355-371.	3.9	27
6	Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single ell mutation detection to mutant plant regeneration. Plant Biotechnology Journal, 2018, 16, 1295-1310.	8.3	222
7	VIP1 and Its Homologs Are Not Required for Agrobacterium-Mediated Transformation, but Play a Role in Botrytis and Salt Stress Responses. Frontiers in Plant Science, 2018, 9, 749.	3.6	21
8	An armadillo-domain protein participates in a telomerase interaction network. Plant Molecular Biology, 2018, 97, 407-420.	3.9	9
9	Somaclonal variation does not preclude the use of rice transformants for genetic screening. Plant Journal, 2016, 85, 648-659.	5.7	34
10	cDNA Library Screening Identifies Protein Interactors Potentially Involved in Non-Telomeric Roles of Arabidopsis Telomerase. Frontiers in Plant Science, 2015, 6, 985.	3.6	5
11	<i>Agrobacterium</i> Tâ€ <scp>DNA</scp> integration into the plant genome can occur without the activity of key nonâ€homologous endâ€joining proteins. Plant Journal, 2015, 81, 934-946.	5.7	43
12	ls VIP1 important for <i><scp>A</scp>grobacterium</i> â€mediated transformation?. Plant Journal, 2014, 79, 848-860.	5.7	66
13	Bimolecular Fluorescence Complementation for Imaging Protein Interactions in Plant Hosts of Microbial Pathogens. Methods in Molecular Biology, 2014, 1197, 185-208.	0.9	10
14	Cytokinins Secreted by <i>Agrobacterium</i> Promote Transformation by Repressing a Plant Myb Transcription Factor. Science Signaling, 2013, 6, ra100.	3.6	52
15	Screening a cDNA Library for Protein–Protein Interactions Directly in Planta. Plant Cell, 2012, 24, 1746-1759.	6.6	60
16	Generation of Backbone-Free, Low Transgene Copy Plants by Launching T-DNA from the <i>Agrobacterium</i> Chromosome. Plant Physiology, 2010, 152, 1158-1166.	4.8	74
17	Overexpression of Several <i>Arabidopsis</i> Histone Genes Increases <i>Agrobacterium</i> -Mediated Transformation and Transgene Expression in Plants. Plant Cell, 2009, 21, 3350-3367.	6.6	71
18	The Agrobacterium rhizogenes GALLS Gene Encodes Two Secreted Proteins Required for Genetic Transformation of Plants. Journal of Bacteriology, 2009, 191, 355-364.	2.2	22

LAN-YING LEE

#	Article	IF	CITATIONS
19	Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells. Plant Methods, 2008, 4, 24.	4.3	224
20	T-DNA Binary Vectors and Systems. Plant Physiology, 2008, 146, 325-332.	4.8	186
21	IMPa-4, an <i>Arabidopsis</i> Importin α Isoform, Is Preferentially Involved in <i>Agrobacterium</i> -Mediated Plant Transformation. Plant Cell, 2008, 20, 2661-2680.	6.6	132
22	Novel Plant Transformation Vectors Containing the Superpromoter. Plant Physiology, 2007, 145, 1294-1300.	4.8	67
23	Subcellular Localization of Interacting Proteins by Bimolecular Fluorescence Complementation in Planta. Journal of Molecular Biology, 2006, 362, 1120-1131.	4.2	352
24	Characterization of the Arabidopsis Lysine-Rich Arabinogalactan-Protein AtAGP17 Mutant (rat1) That Results in a Decreased Efficiency of Agrobacterium Transformation. Plant Physiology, 2004, 135, 2162-2171.	4.8	149
25	Osa Protein Constitutes a Strong Oncogenic Suppression System That Can Block vir-Dependent Transfer of IncQ Plasmids between Agrobacterium Cells and the Establishment of IncQ Plasmids in Plant Cells. Journal of Bacteriology, 2004, 186, 7254-7261.	2.2	12
26	The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA. Nucleic Acids Research, 2003, 31, 4247-4255.	14.5	87
27	Identification of Arabidopsis rat Mutants. Plant Physiology, 2003, 132, 494-505.	4.8	159
28	Novel Constructions to Enable the Integration of Genes into the Agrobacterium tumefaciens C58 Chromosome. Molecular Plant-Microbe Interactions, 2001, 14, 577-579.	2.6	11
29	Antirestriction protein ard (type C) encoded by IncW plasmid psa has a high similarity to the "protein transport―domain of TraC1 primase of promiscuous plasmid RP4 1 1Edited by M. Gottesman. Journal of Molecular Biology, 2000, 296, 969-977.	4.2	55
30	pSa Causes Oncogenic Suppression of Agrobacterium by Inhibiting VirE2 Protein Export. Journal of Bacteriology, 1999, 181, 186-196.	2.2	44