
matzui Kudmila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6516495/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control of electromagnetic properties in substituted M-type hexagonal ferrites. Journal of Alloys and Compounds, 2018, 754, 247-256.	5.5	214
2	Investigation into the structural features and microwave absorption of doped barium hexaferrites. Dalton Transactions, 2017, 46, 9010-9021.	3.3	136
3	Magnetic anisotropy of the graphite nanoplatelet–epoxy and MWCNT–epoxy composites with aligned barium ferrite filler. Journal of Materials Science, 2017, 52, 5345-5358.	3.7	117
4	Effect of gallium doping on electromagnetic properties of barium hexaferrite. Journal of Physics and Chemistry of Solids, 2017, 111, 142-152.	4.0	99
5	Functional Magnetic Composites Based on Hexaferrites: Correlation of the Composition, Magnetic and High-Frequency Properties. Nanomaterials, 2019, 9, 1720.	4.1	90
6	Effect of Ga content on magnetic properties of BaFe12â^'xGaxO19/epoxy composites. Journal of Materials Science, 2020, 55, 9385-9395.	3.7	65
7	Electromagnetic Properties of Carbon Nanotube/BaFe12â°'xGaxO19/Epoxy Composites with Random and Oriented Filler Distributions. Nanomaterials, 2021, 11, 2873.	4.1	64
8	The Effect of Filler Morphology and Distribution on Electrical and Shielding Properties of Graphite-Epoxy Composites. Molecular Crystals and Liquid Crystals, 2011, 535, 179-188.	0.9	40
9	High-frequency absorption properties of gallium weakly doped barium hexaferrites. Philosophical Magazine, 2019, 99, 585-605.	1.6	39
10	Structure–electrical resistivity relationship of N-doped multi-walled carbon nanotubes. Journal of Materials Science, 2012, 47, 2390-2395.	3.7	31
11	Electrical Properties of Composite Materials with Electric Field-Assisted Alignment of Nanocarbon Fillers. Nanoscale Research Letters, 2017, 12, 471.	5.7	31
12	The effect of boron nitride on electrical conductivity of nanocarbon-polymer composites. Journal of Materials Science, 2014, 49, 2098-2105.	3.7	29
13	Transport Properties of Composites with Carbon Nanotubeâ€Based Composites. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 13, 259-265.	2.1	28
14	Polyethylene Composites with Segregated Carbon Nanotubes Network: Low Frequency Plasmons and High Electromagnetic Interference Shielding Efficiency. Materials, 2020, 13, 1118.	2.9	25
15	Thermo-Exfoliated Graphite Containing CuO/Cu2(OH)3NO3:(Co2+/Fe3+) Composites: Preparation, Characterization and Catalytic Performance in CO Conversion. Materials, 2010, 3, 572-584.	2.9	24
16	Structure and magnetic properties of multi-walled carbon nanotubes modified with iron. Low Temperature Physics, 2010, 36, 1086-1090.	0.6	23
17	Electromagnetic shielding properties of epoxy composites with hybrid filler nanocarbon/BaTiO3. Materials Chemistry and Physics, 2020, 240, 122234.	4.0	22
18	Thermal characterization of expanded graphite and its composites. Inorganic Materials, 2007, 43, 597-601.	0.8	18

MATZUI KUDMILA

#	Article	IF	CITATIONS
19	Mechanical and electrical properties of the epoxy composites with graphite nanoplatelets and carbon nanotubes. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 336-341.	1.8	17
20	Microwave properties of epoxy composites with mixed filler carbon nanotubes/BaTiO3. Applied Nanoscience (Switzerland), 2020, 10, 2759-2767.	3.1	17
21	Resistance of a Nanocarbon Material Containing Nanotubes. Molecular Crystals and Liquid Crystals, 2007, 468, 289/[641]-297/[649].	0.9	16
22	Attenuation of electromagnetic radia- tion by graphite-epoxy composites. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, NA-NA.	0.8	16
23	Electrical conductivity of epoxy resin filled with graphite nanoplatelets and boron nitride. Materialwissenschaft Und Werkstofftechnik, 2013, 44, 254-258.	0.9	13
24	Development of carbon nanotube-polymer composites with oriented distribution of MWCNTs induced by electric field. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2718-2722.	1.8	12
25	Optimization of multilayer electromagnetic shields: A genetic algorithm approach. Materialwissenschaft Und Werkstofftechnik, 2016, 47, 263-271.	0.9	12
26	C–Co Nanocomposite Materials. Inorganic Materials, 2003, 39, 1147-1153.	0.8	11
27	Electromagnetic losses in carbon–epoxy composites. Materials Science and Engineering C, 2007, 27, 1007-1009.	7.3	11
28	Magnetoresistance of nanocarbon materials based on carbon nanotubes. Low Temperature Physics, 2011, 37, 819-823.	0.6	11
29	Effects of Dispersion and Ultraviolet/Ozonolysis Functionalization of Graphite Nanoplatelets on the Electrical Properties of Epoxy Nanocomposites. Springer Proceedings in Physics, 2016, , 477-491.	0.2	11
30	Dielectric and microwave shielding properties of three-phase composites graphite nanoplatelets/carbonyl iron/epoxy resin. Applied Nanoscience (Switzerland), 2020, 10, 4781-4790.	3.1	11
31	Asymmetric magnetoresistance in the graphite intercalation compounds with cobalt. Molecular Crystals and Liquid Crystals, 2016, 639, 137-150.	0.9	10
32	Conductive and Shielding Properties of MWCNTs/Polymer Nanocomposites with Aligned Filler Distribution. NATO Science for Peace and Security Series B: Physics and Biophysics, 2016, , 251-271.	0.3	8
33	Phonon Drag in GIC Based on Disordered Graphite. Molecular Crystals and Liquid Crystals, 2000, 340, 319-324.	0.3	7
34	Microwave shielding and absorbing properties of single- and multilayered structures based on two-phase filler/epoxy composites. Applied Nanoscience (Switzerland), 0, , 1.	3.1	7
35	Complex permittivity of polymer-based composites with carbon nanotubes in microwave band. Applied Nanoscience (Switzerland), 2020, 10, 2691-2697.	3.1	6
36	Impedance characterization and microwave permittivity of multi-walled carbon nanotubes/BaTiO3/epoxy composites. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	6

matzui Kudmila

#	Article	IF	CITATIONS
37	Transport Properties of Epoxy-Binary Filler Composites. Molecular Crystals and Liquid Crystals, 2014, 589, 195-201.	0.9	5
38	Dielectric properties of composite materials containing aligned carbon nanotubes. Inorganic Materials, 2016, 52, 1198-1203.	0.8	5
39	Extraordinary synergy in the thermal and electric properties of polymer matrix reinforced with hybrid fillers. Materialwissenschaft Und Werkstofftechnik, 2016, 47, 278-287.	0.9	5
40	Microwave Properties of One-dimensional Photonic Structures Based on Composite Layers Filled with Nanocarbon. Nanoscale Research Letters, 2017, 12, 269.	5.7	5
41	Electrical properties of epoxy composites with carbon nanotubes, mixed with TiO2 or Fe particles. Applied Nanoscience (Switzerland), 2021, 11, 1827-1837.	3.1	5
42	Electrical and electromagnetic interference shielding properties of GNP-NiFe hybrid composite with segregate structure of conductive networks. Journal of Applied Physics, 2022, 131, .	2.5	5
43	Fluid Dynamics in Subnanometer Channels of Carbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 13, 287-291.	2.1	4
44	Peculiarities of Charge Transfer in Graphite Intercalation Compounds with Bromine and Iodine Chloride. Springer Proceedings in Physics, 2017, , 771-787.	0.2	4
45	Weak localization and interaction effects in acceptor graphite intercalation compounds. Low Temperature Physics, 2017, 43, 703-707.	0.6	4
46	Dielectric properties of epoxy composites with mixed fillers including graphite nanoplatelets/BaTiO ₃ . Molecular Crystals and Liquid Crystals, 2018, 671, 67-77.	0.9	4
47	Percolation characteristics of multi-polymer composites with different ratios of nanocarbon fillers. Molecular Crystals and Liquid Crystals, 2020, 699, 97-110.	0.9	4
48	Electrical and Thermal Conductivity of Ternary Composites Graphite Nanoplatelets/TiO2/Epoxy. Journal of Nano- and Electronic Physics, 2019, 11, 03007-1-03007-7.	0.5	4
49	Microwave absorption in epoxy composites filled with MoS2 and carbon nanotubes. Journal of Applied Physics, 2022, 131, 035103.	2.5	4
50	Thermal stability of graphite-Cobalt nanocomposite materials. Inorganic Materials, 2006, 42, 19-23.	0.8	3
51	Magnetic properties of cobalt arbon nanocomposites. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1264-1268.	0.8	3
52	Electrodynamic properties of the nanocarbon/polymer composites with aligned by magnetic field secondary non-conductive component. , 2015, , .		3
53	Electrical and thermal properties of epoxy composites filled with carbon nanotubes and inorganic particles. Molecular Crystals and Liquid Crystals, 2021, 717, 109-120.	0.9	3
54	Low-temperature magnetoresistance of multi-walled carbon nanotubes with perfect structure. Low Temperature Physics, 2022, 48, 89-98.	0.6	3

matzui Kudmila

#	Article	IF	CITATIONS
55	Thermopower of Pregraphitic Carbons. Molecular Crystals and Liquid Crystals, 2000, 340, 361-366.	0.3	2
56	Investigation of the Thermoexfoliation Process in Different Acceptor GICs. Molecular Crystals and Liquid Crystals, 2000, 340, 197-202.	0.3	2
57	Modeling of gradient composite structures for shielding of microwaves. Molecular Crystals and Liquid Crystals, 2016, 639, 105-114.	0.9	2
58	Dielectric Properties of Nanocarbon Polymer Composites with Binary Filler. Springer Proceedings in Physics, 2017, , 855-871.	0.2	2
59	Dielectric Properties and AC Conductivity of Epoxy/Hybrid Nanocarbon Filler Composites. Springer Proceedings in Physics, 2018, , 377-393.	0.2	2
60	Magnetoresistance of Modified Carbon Nanotubes. Journal of Nano- and Electronic Physics, 2017, 9, 01018-1-01018-7.	0.5	2
61	Resistivity of Graphite Intercalation Compounds with Bromine and Aluminum Chloride under the Pressure. Journal of Nano- and Electronic Physics, 2017, 9, 03002-1-03002-7.	O.5	2
62	Thermal Desorption of Graphite Intercalated by SbCl ₅ . Molecular Crystals and Liquid Crystals, 2000, 340, 313-318.	0.3	1
63	Thermodynamic Model of Thermoexfoliation. Molecular Crystals and Liquid Crystals, 2000, 340, 203-209.	0.3	1
64	The effect of graphite functionalization on electrical and shielding properties of epoxy composites. Molecular Crystals and Liquid Crystals, 2016, 639, 94-104.	0.9	1
65	Phase transitions in the graphite intercalation compound with bromine. Molecular Crystals and Liquid Crystals, 2018, 672, 41-53.	0.9	1
66	Influence type filler on tunnel conductivity in composites. Molecular Crystals and Liquid Crystals, 2018, 674, 76-91.	0.9	1
67	The Effect of Ultraviolet Irradiation on the Electro-transport Properties of Carbon Nanotubes. Springer Proceedings in Physics, 2019, , 145-163.	0.2	1
68	Polymer Nanocomposites with Hybrid Fillers as Materials with Controllable Electrodynamic Characteristics for Microwave Devices. NATO Science for Peace and Security Series B: Physics and Biophysics, 2019, , 91-112.	0.3	1
69	Electrodynamic properties of epoxy composites with mixed filler graphite nanoplatelets + TiO ₂ . Molecular Crystals and Liquid Crystals, 2020, 700, 22-29.	0.9	1
70	Complex permittivity of epoxy composites with carbon nanotubes and TiO ₂ in microwave range. Molecular Crystals and Liquid Crystals, 2021, 717, 121-127.	0.9	1
71	The Structural Studies of Phase Transitions in the Graphite Intercalation Compounds with Iodine Chloride and Bromine. Journal of Nano- and Electronic Physics, 2019, 11, 04002-1-04002-6.	0.5	1
72	Electrotransport Properties of Irradiated with Ultraviolet Carbon Nanotubes. Journal of Nano- and Electronic Physics, 2016, 8, 01016-1-01016-4.	0.5	1

MATZUI KUDMILA

#	Article	IF	CITATIONS
73	ELECTROPHYSICAL PROPERTIES OF THE NANOCARBON MATERIALS. , 2007, , 149-154.		Ο
74	Semiconducting and Optical Properties of Compact Graphene-Like Nanoparticles of Molybdenum Disulfide. Springer Proceedings in Physics, 2017, , 845-854.	0.2	0
75	Intercalated multiwall carbon nanotubes with cobalt: structure and properties. Molecular Crystals and Liquid Crystals, 2021, 718, 80-91.	0.9	Ο
76	Peculiarities of phase transformations in graphite intercalation compounds with bromine. Molecular Crystals and Liquid Crystals, 0, , 1-7.	0.9	0
77	Electrical Conductivity of Fine Crystalline Graphite under the Influence of the Hydrostatic Pressure. Journal of Nano- and Electronic Physics, 2016, 8, 02017-1-02017-4.	0.5	0
78	Interface Interaction as a Factor of Dielectric Properties of Epoxy-based Composites with Graphite Nanoplatelets. Journal of Nano- and Electronic Physics, 2019, 11, 02032-1-02032-5.	0.5	0