Pierre Gibot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6516469/publications.pdf Version: 2024-02-01

DIEDDE CIROT

#	Article	IF	CITATIONS
1	Spark sensitivity and light signature mitigation of an Al/SnO2 nanothermite by the controlled addition of a conductive polymer. Chemical Engineering Journal, 2022, 427, 131611.	12.7	13
2	Conductive Oxides for Formulating Mitigated-Sensitivity Energetic Composite Materials. Journal of Composites Science, 2022, 6, 174.	3.0	0
3	Spark Desensitization of Nanothermites via the Addition of Highly Electro-Conductive Carbon Particles. Journal of Carbon Research, 2022, 8, 35.	2.7	1
4	Polypyrrole material for the electrostatic discharge sensitivity mitigation of Al/SnO ₂ energetic composites. Journal of Applied Polymer Science, 2021, 138, 50752.	2.6	7
5	Cover Image, Volume 138, Issue 29. Journal of Applied Polymer Science, 2021, 138, 50919.	2.6	Ο
6	Synthesis of Oxide Ceramics in Detonating Atmosphere. Ceramics, 2021, 4, 249-256.	2.6	0
7	Effect of spray drying treatment on the optical properties of Mg–Al spinel ceramics. Open Ceramics, 2021, 6, 100102.	2.0	2
8	Study on Indium (III) Oxide/Aluminum Thermite Energetic Composites. Journal of Composites Science, 2021, 5, 166.	3.0	5
9	Nanosized niobium (V) and tantalum (V) oxide ceramics as competitive oxidizers within aluminium-based nanothermites. Energetic Materials Frontiers, 2021, 2, 167-173.	3.2	8
10	Aluminium/tin (IV) oxide thermite composite: sensitivities and reaction propagation. Journal of Energetic Materials, 2020, 38, 295-308.	2.0	8
11	Zirconia nanopowder synthesis via detonation of trinitrotoluene. Ceramics International, 2020, 46, 27057-27062.	4.8	5
12	Centimetric-Sized Chromium (III) Oxide Object Synthesized by Means of the Carbon Template Replication. Ceramics, 2020, 3, 92-100.	2.6	9
13	Detonation synthesis of ZrO2 by means of an ammonium nitrate-based explosive emulsion. Solid State Sciences, 2020, 108, 106405.	3.2	3
14	SnO ₂ –polyaniline composites for the desensitization of Al/SnO ₂ thermite composites. Journal of Applied Polymer Science, 2020, 137, 48947.	2.6	9
15	Mechanical Desensitization of an Al/WO3 Nanothermite by Means of Carbonaceous Coatings Derived from Carbohydrates. Journal of Carbon Research, 2019, 5, 37.	2.7	9
16	Templated synthesis of Cr2O3 material for energetic composites with high performance. Solid State Sciences, 2019, 94, 162-167.	3.2	8
17	Optical limiting properties of templated Cr2O3 and WO3 nanoparticles. Optical Materials, 2019, 95, 109220.	3.6	16
18	Nanostructuring of carbon materials by means of a calcium phosphate template. Journal of Porous Materials, 2019, 26, 747-754.	2.6	3

PIERRE GIBOT

#	Article	IF	CITATIONS
19	Tuning physical surface properties of tin dioxide nanopowders using zinc oxide as template. Solid State Sciences, 2018, 82, 13-18.	3.2	3
20	Synthesis of Nb2O5 and Ta2O5 nanopowders by means of an endo-templating method. Ceramics International, 2017, 43, 16451-16456.	4.8	3
21	Porous WS 2 and W 2 N powders by hard templating with colloidal silica. Ceramics International, 2017, 43, 1443-1448.	4.8	6
22	Safer and Performing Energetic Materials Based on Polyaniline-Doped Nanocomposites. Journal of Energetic Materials, 2017, 35, 136-147.	2.0	25
23	Enhancement of the graphitic carbon nitride surface properties from calcium salts as templates. Microporous and Mesoporous Materials, 2016, 219, 42-47.	4.4	43
24	Modulation of the Reactivity of a WO ₃ /Al Energetic Material with Graphitized Carbon Black as Additive. Journal of Energetic Materials, 2015, 33, 260-276.	2.0	33
25	Ca3(PO4)2 biomaterial: A non toxic template to prepare highly porous Cr2O3. Materials Letters, 2015, 161, 172-174.	2.6	13
26	Formation of HxN-rich graphitic carbon nitride network from guanidine carbonate salt by pyrolysis. Diamond and Related Materials, 2015, 59, 7-12.	3.9	15
27	Highly Insensitive/Reactive Thermite Prepared from Cr ₂ O ₃ Nanoparticles. Propellants, Explosives, Pyrotechnics, 2011, 36, 80-87.	1.6	5
28	Synthesis of WO3 nanoparticles for superthermites by the template method from silica spheres. Solid State Sciences, 2011, 13, 908-914.	3.2	21
29	Miniaturization of micrometric SiC from a detonation process of highly energetic material. Powder Technology, 2011, 208, 324-328.	4.2	1
30	High resolution electron energy loss spectroscopy of manganese oxides: Application to Mn3O4 nanoparticles. Materials Characterization, 2010, 61, 1268-1273.	4.4	100
31	Original synthesis of chromium (III) oxide nanoparticles. Journal of the European Ceramic Society, 2010, 30, 911-915.	5.7	84
32	Effects of Moderate Thermal Treatments under Air on LiFePO4-based Nano Powders. ECS Meeting Abstracts, 2009, , .	0.0	0
33	The effects of moderate thermal treatments under air on LiFePO4-based nano powders. Journal of Materials Chemistry, 2009, 19, 3979.	6.7	106
34	The synthesis of SiC and TiC protective coatings for carbon fibers by the reactive replica process. Journal of the European Ceramic Society, 2008, 28, 2265-2274.	5.7	53
35	Room-temperature single-phase LiÂinsertion/extraction in nanoscale LixFePO4. Nature Materials, 2008, 7, 741-747.	27.5	639
36	Preparation of explosive nanoparticles in a porous chromium(III) oxide matrix: a first attempt to control the reactivity of explosives. Nanotechnology, 2008, 19, 285716.	2.6	21

PIERRE GIBOT

#	Article	lF	CITATIONS
37	Hydrophilic and hydrophobic nano-sized Mn3O4 particles. Journal of Solid State Chemistry, 2007, 180, 695-701.	2.9	45
38	TiO2 and [TiO2/β-SiC] microtubes prepared from an original process. Journal of the European Ceramic Society, 2007, 27, 2195-2201.	5.7	13
39	Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy. Chemistry of Materials, 2006, 18, 5520-5529.	6.7	475
40	(Co,Fe)Pt nanoparticles by aqueous route; self-assembling, thermal and magnetic properties. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 555-558.	2.3	33
41	New carbons with controlled nanoporosity obtained by nanocasting using a SBA-15 mesoporous silica host matrix and different preparation routes. Journal of Physics and Chemistry of Solids, 2004, 65, 139-146.	4.0	76
42	Formation of tubular silicon carbide from a carbon–silica material by using a reactive replica technique: infra-red characterisation. Applied Surface Science, 2003, 210, 329-337.	6.1	48
43	Study of the structural evolutions of mesoporous MCM-48 silica infiltrated with carbon by different techniques. Microporous and Mesoporous Materials, 2003, 62, 87-96.	4.4	22
44	Characterisation of ordered mesoporous carbons and their MCM-48 silica templates obtained by the replication technique using different carbon infiltration processes. Studies in Surface Science and Catalysis, 2003, 146, 41-44.	1.5	3
45	P ₂ O ₅ DOPANT IN PbO-PbCl ₂ -CdCl ₂ GLASSES. Phosphorus Research Bulletin, 1999, 10, 570-575.	0.6	2