Anatoliy S Andrushchak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6516430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A New Approach of Dielectric Permittivity Investigation of Crystalline and Nanocomposite Materials at SubTerahertz Frequency Range. , 2021, , .		1
2	Photoelastic Properties of Trigonal Crystals. Crystals, 2021, 11, 1095.	2.2	2
3	The optimal vector phase matching conditions in crystalline materials determined by extreme surfaces method: Example of uniaxial nonlinear crystals. Optical Materials, 2021, 120, 111420.	3.6	1
4	Specific complex-oxide crystals with strong nonlinear absorption and nonlinear refraction as promising optical materials. Optical Materials, 2021, 121, 111493.	3.6	9
5	Dynamic Kerr and Pockels electro-optics of liquid crystals in nanopores for active photonic metamaterials. Nanoscale, 2021, 13, 18714-18725.	5.6	Ο
6	Determination of all piezoelectric coefficients and elastic stiffness constants in LiTaO ₃ crystals based on measurements of acoustic wave velocities. Journal of Physical Studies, 2021, 25, .	0.5	0
7	Estimation of the Diffraction Efficiency of Oxide Single Crystals Acousto-Optic Devices in the Sub-Terahertz Frequency Range. , 2020, , .		1
8	CdS Nanocrystallines: Synthesis, Structure and Nonlinear Optical Properties. , 2020, , .		0
9	Nanoengineering of anisotropic materials for creating the active optical cells with increased energy efficiency. , 2018, , .		8
10	Optical Properties of Nanoporous Al2O3 Matrices with Ammonium Dihydrogen Phosphate Crystals in Nanopores. , 2018, , .		3
11	General method of extreme surfaces for geometry optimization of the linear electro-optic effect on an example of LiNbO_3:MgO crystals. Applied Optics, 2017, 56, 6255.	1.8	9
12	Information technology for most efficient application of bulk and nanocrystalline materials as sensitive elements for optoelectronic devices. , 2016, , .		7
13	Spatial anisotropy of induced optical effects in anisotropic materials for optoelectronic devices: Hidden reserves for enhancing their performance. , 2016, , .		3
14	Spatial anisotropy of the linear electro-optic effect in lithium niobate crystals: Analytical calculations and their experimental verification. Optical Materials, 2015, 45, 42-46.	3.6	11
15	Piezo-optic coefficients of CaWO4 crystals. Crystallography Reports, 2015, 60, 130-137.	0.6	21
16	New Interference Technique for Determination of Low Loss Material Permittivity in the Extremely High Frequency Range. IEEE Transactions on Instrumentation and Measurement, 2015, 64, 3005-3012.	4.7	24
17	Nanostructures on the Basis of Porous Alumina with Intercalated with Cholesteric Liquid Crystal. Molecular Crystals and Liquid Crystals, 2015, 611, 132-138.	0.9	11
18	Interferometric technique for controlling wedge angle and surface flatness of optical slabs. Optics and Lasers in Engineering, 2013, 51, 342-347.	3.8	17

Anatoliy S Andrushchak

#	Article	IF	CITATIONS
19	Electric-field-induced optical path length change in LiNbO ₃ :MgO crystals: spatial anisotropy analysis. Applied Optics, 2013, 52, 3757.	1.8	8
20	Angular stability of electric fieldâ€induced effects in crystalline materials. Crystal Research and Technology, 2013, 48, 387-399.	1.3	2
21	Static photoelasticity of gallium phosphide crystals. Crystallography Reports, 2012, 57, 124-130.	0.6	19
22	Interferometry technique for refractive index measurements at subcentimeter wavelengths. Microwave and Optical Technology Letters, 2011, 53, 1193-1196.	1.4	15
23	Piezooptical coefficients of La3Ga5SiO14 and CaWO4 crystals: A combined optical interferometry and polarization-optical study. Optical Materials, 2010, 33, 26-30.	3.6	23
24	Ferroelectric AgNa(NO2)2 crystals as novel highly efficient nonlinear optical material: Phase matched second harmonic generation driven by a spontaneous and electric field induced polarizations. Journal of Applied Physics, 2010, 107, .	2.5	51
25	Spatial anisotropy of the acousto-optical efficiency in lithium niobate crystals. Journal of Applied Physics, 2010, 108, .	2.5	37
26	Spatial anisotropy of linear electro-optic effect in crystal materials: II. Indicative surfaces as efficient tool for electro-optic coupling optimization in LiNbO3. Optics and Lasers in Engineering, 2009, 47, 24-30.	3.8	28
27	Spatial anisotropy of linear electro-optic effect in crystal materials: l—Experimental determination of electro-optic tensor in LiNbO3 by means of interferometric technique. Optics and Lasers in Engineering, 2009, 47, 31-38.	3.8	28
28	Anisotropy of the electro-optic effect in magnesium-doped LiNbO3 crystals. Crystallography Reports, 2009, 54, 306-312.	0.6	16
29	Piezo-optic coefficients of MgO-doped LiNbO_3 crystals. Applied Optics, 2009, 48, 1904.	2.1	36
30	Automated interferometric technique for express analysis of the refractive indices in isotropic and anisotropic optical materials. Optics and Lasers in Engineering, 2008, 46, 162-167.	3.8	26
31	Design of optimization technique for electro- and acousto-optical interactions of light in crystalline materials. , 2008, , .		3
32	Automation of measuring process of materials refractive indexes in the millimeter-submilimeter waves range by interferometric-turning method. , 2008, , .		3
33	Optimization technique for piezo- and acousto-optical interactions geometry of light in anisotropic materials for example of pure and MgO-doped lithium niobate crystals. , 2007, , .		Ο
34	The indicative surfaces of the photoelastic effect in Cs2HgCl4 biaxial crystals. Optical Materials, 2007, 29, 475-480.	3.6	26
35	Efficiency Increasing of Electro- and Acousto-Optical Light Modulators as Main Component of Fiber-Optical Systems for Information Transmission. , 2006, , .		1
36	Two-fold interferometric measurements of piezo-optic constants: application to Î ² -BaB2O4 crystals. Optics and Laser Technology, 2005, 37, 319-328.	4.6	23

#	Article	IF	CITATIONS
37	Spatial anisotropy of photoelastic and acoustooptic properties in β-BaB2O4 crystals. Optical Materials, 2004, 27, 619-624.	3.6	26
38	Cs2HgCl4 crystal as a new material for acoustooptical applications. Optical Materials, 2003, 22, 263-268.	3.6	25
39	Measurement of refractive indices of isotropic and crystalline materials using an interferometric method. Measurement Techniques, 1992, 35, 816-819.	0.6	2