Yuehong Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6515937/publications.pdf

Version: 2024-02-01

236925 254184 43 1,883 25 43 citations h-index g-index papers 49 49 49 2173 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Two isomeric metal–organic frameworks bearing stilbene moieties for highly volatile iodine uptake. Inorganic Chemistry Frontiers, 2022, 9, 3436-3443.	6.0	10
2	Multiple MMCT properties of the diruthenium-based cyanido-bridged complex RuVI2-NC-Ru ^{II} -CN-RuVI2. Dalton Transactions, 2022, 51, 10047-10054.	3.3	4
3	A combined bottom-up and top-down strategy to fabricate lanthanide hydrate@2D MOF composite nanosheets for direct white light emission. Journal of Materials Chemistry C, 2021, 9, 14628-14636.	5.5	18
4	Water-Stable Two-Dimensional Metal–Organic Framework Nanostructures for Fe ³⁺ lons Detection. Crystal Growth and Design, 2021, 21, 5275-5282.	3.0	16
5	Coordination tailoring of water-labile 3D MOFs to fabricate ultrathin 2D MOF nanosheets. Nanoscale, 2020, 12, 12767-12772.	5.6	40
6	Twofold Interpenetrated 2D MOF Nanosheets Generated by an Instant In Situ Exfoliation Method: Morphology Control and Fluorescent Sensing. Advanced Materials Interfaces, 2020, 7, 2000813.	3.7	33
7	Metal–Organic Frameworks Based on a Bent Triazole Dicarboxylic Acid: Magnetic Behaviors and Selective Luminescence Sensing Properties. Crystal Growth and Design, 2019, 19, 1057-1063.	3.0	21
8	A new Cd based metal–organic framework for quick and convenient detection of trace water in isopropanol and 1,4-dioxane. Journal of Materials Chemistry C, 2018, 6, 12341-12346.	5.5	29
9	Pore surface engineering of metal–organic frameworks for heterogeneous catalysis. Coordination Chemistry Reviews, 2018, 376, 248-276.	18.8	174
10	Benzoquinone-bridged Co ₂ complexes with different magnetic anisotropy induced by solvent molecules. Dalton Transactions, 2017, 46, 3435-3437.	3.3	6
11	Homochiral Metal–Organic Frameworks with Tunable Nanoscale Channel Array and Their Enantioseparation Performance against Chiral Diols. Inorganic Chemistry, 2017, 56, 6275-6280.	4.0	39
12	Synthesis, structure, characterization, and multifunctional properties of a family of rare earth organic frameworks. CrystEngComm, 2017, 19, 2106-2112.	2.6	22
13	Effects of Ru(ii/iii) redox on the Co(ii) coordination number and magnetic properties of 1D cyanide-bridged Co–Ru compounds. Dalton Transactions, 2017, 46, 1038-1041.	3.3	2
14	Introduction of Redâ€Greenâ€Blue Fluorescent Dyes into a Metal–Organic Framework for Tunable White Light Emission. Advanced Materials, 2017, 29, 1700778.	21.0	219
15	A Luminescent Metal–Organic Framework Thermometer with Intrinsic Dual Emission from Organic Lumophores. Chemistry - A European Journal, 2016, 22, 4460-4468.	3.3	66
16	Intercalation of Varied Sulfonates into a Layered MOC: Confinement aused Tunable Luminescence and Novel Properties. Chemistry - A European Journal, 2016, 22, 5327-5334.	3.3	18
17	1D to 3D and Chiral to Noncentrosymmetric Metal–Organic Complexes Controlled by the Amount of DEF Solvent: Photoluminescent and NLO Properties. Inorganic Chemistry, 2016, 55, 4199-4205.	4.0	30
18	Stitching 2D Polymeric Layers into Flexible 3D Metal–Organic Frameworks via a Sequential Self-Assembly Approach. Crystal Growth and Design, 2016, 16, 3154-3162.	3.0	30

#	Article	IF	Citations
19	Confinement of an electron-capturing unit within an electron-donating framework for X-ray detection. Journal of Materials Chemistry C, 2016, 4, 3431-3436.	5. 5	26
20	Strategies to construct homochiral metal–organic frameworks: ligands selection and practical techniques. CrystEngComm, 2016, 18, 2792-2802.	2.6	20
21	Effect of anions on the self-assembly of two Cd–organic frameworks: syntheses, structural diversity and photoluminescence properties. CrystEngComm, 2015, 17, 598-603.	2.6	30
22	A series of d ¹⁰ coordination polymers constructed with a rigid tripodal imidazole ligand and varied polycarboxylates: syntheses, structures and luminescence properties. CrystEngComm, 2015, 17, 2004-2012.	2.6	35
23	Two chiral coordination polymers constructed from (1R,2R)-1,2-diaminocyclohexane derivative: Syntheses, structures and properties. Inorganic Chemistry Communication, 2015, 55, 99-102.	3.9	8
24	From Pair Quadruple- to Single-Stranded Helices to Lines in a Mixed Ligand System via Adjusting the N-Substituent of <scp>I</scp> -Glu. Inorganic Chemistry, 2015, 54, 3951-3957.	4.0	21
25	Syntheses, crystal structures, spectroscopy, electrochemical and magnetic properties of four cyanido-bridged M ^{II} –Mn ^{III} (MÂ=ÂFe,ÂRu,ÂOs)Âcomplexes. Journal of Coordination Chemistry, 2015, 68, 55-70.	2.2	6
26	Homochiral Layered Coordination Polymers from Chiral <i>N</i> -Carbamylglutamate and Achiral Flexible Bis(pyridine) Ligands: Syntheses, Crystal Structures, and Properties. Crystal Growth and Design, 2014, 14, 6230-6238.	3.0	34
27	A series of metal–organic frameworks containing diverse secondary building units derived from a flexible triazine-based tetracarboxylic ligand. CrystEngComm, 2014, 16, 2188-2195.	2.6	12
28	A combination of the "pillaring―strategy and chiral induction: an approach to prepare homochiral three-dimensional coordination polymers from achiral precursors. Chemical Communications, 2014, 50, 8320.	4.1	45
29	Intercalation of chiral molecules into layered metal–organic frameworks: a strategy to synthesize homochiral MOFs. Chemical Communications, 2013, 49, 10644.	4.1	32
30	Effect of anions on the self-assembly of Zn(ii) with a hydrogenated Schiff base ligand: structural diversity and photoluminescent properties. CrystEngComm, 2013, 15, 2714.	2.6	29
31	Lanthanide coordination polymers assembled from triazine-based flexible polycarboxylate ligands and their luminescent properties. CrystEngComm, 2013, 15, 3560.	2.6	25
32	Self assembly of a tren-derivative hydrogenated Schiff base with transition metal ions: syntheses, crystal structures and photoluminescent properties. CrystEngComm, 2012, 14, 2879.	2.6	13
33	Cu(l)-Catalyzed Diamination of Disubstituted Terminal Olefins: An Approach to Potent NK ₁ Antagonist. Organic Letters, 2009, 11, 2365-2368.	4.6	58
34	Asymmetric Threeâ€Component Strecker Reactions Catalyzed by <i>trans</i> â€4â€Hydroxyâ€∢scp>Lâ€prolineâ€Derived <i>N</i> , <i>N′</i> â€Dioxides. Chemistry - A Eu Journal, 2008, 14, 6789-6795.	ırœ pe an	62
35	Highly Enantioselective Allylation of Aromatic αâ€Keto Phosphonates Catalyzed by Chiral <i>N,N′â€</i> Dioxideâ€Indium(III) Complexes. Advanced Synthesis and Catalysis, 2008, 350, 287-294.	4.3	45
36	Asymmetric Ring Opening of <i>meso</i> â€Epoxides with Aromatic Amines Catalyzed by a New Prolineâ€Based <i>N</i> N′ â€Dioxideâ€Indium Tris(triflate) Complex. Advanced Synthesis and Catalysis 2008, 350, 385-390.	s, 4.3	59

YUEHONG WEN

#	Article	IF	CITATION
37	Highly Enantioselective Henry (Nitroaldol) Reaction of Aldehydes and α-Ketoesters Catalyzed by <i>N</i> , <i>N</i> ,6°-Dioxide-Copper(I) Complexes. Journal of Organic Chemistry, 2007, 72, 9323-9328.	3.2	148
38	Chiral Bisformamides as Effective Organocatalysts for the Asymmetric One-Pot, Three-Component Strecker Reaction. Journal of Organic Chemistry, 2007, 72, 7715-7719.	3.2	79
39	Enantioselective Strecker Reaction of Phosphinoyl Ketoimines Catalyzed by in Situ Prepared ChiralN,Nâ€-Dioxides. Journal of Organic Chemistry, 2007, 72, 204-208.	3.2	92
40	A Chiral Functionalized Salt atalyzed Asymmetric Michael Addition of Ketones to Nitroolefins. Advanced Synthesis and Catalysis, 2007, 349, 2156-2166.	4.3	65
41	Enantioselective Cyanosilylation of Ketones Catalyzed by a Nitrogen-Containing Bifunctional Catalyst. Advanced Synthesis and Catalysis, 2006, 348, 538-544.	4.3	74
42	Asymmetric Strecker Reaction of Ketoimines Catalyzed by a Novel Chiral BifunctionalN,N′-Dioxide. Advanced Synthesis and Catalysis, 2006, 348, 2579-2584.	4.3	81
43	Asymmetric Cyanosilylation of Aldehydes Catalyzed by Novel OrganoÂcatalysts. Synlett, 2005, 2005, 2445-2448.	1.8	6