## Yuehong Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6515937/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF     | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| 1  | Introduction of Redâ€Greenâ€Blue Fluorescent Dyes into a Metal–Organic Framework for Tunable White<br>Light Emission. Advanced Materials, 2017, 29, 1700778.                                                                       | 21.0   | 219       |
| 2  | Pore surface engineering of metal–organic frameworks for heterogeneous catalysis. Coordination<br>Chemistry Reviews, 2018, 376, 248-276.                                                                                           | 18.8   | 174       |
| 3  | Highly Enantioselective Henry (Nitroaldol) Reaction of Aldehydes and α-Ketoesters Catalyzed by<br><i>N</i> , <i>N</i> â€ <sup>-</sup> -Dioxide-Copper(I) Complexes. Journal of Organic Chemistry, 2007, 72, 9323-9328.             | 3.2    | 148       |
| 4  | Enantioselective Strecker Reaction of Phosphinoyl Ketoimines Catalyzed by in Situ Prepared<br>ChiralN,Nâ€~-Dioxides. Journal of Organic Chemistry, 2007, 72, 204-208.                                                              | 3.2    | 92        |
| 5  | Asymmetric Strecker Reaction of Ketoimines Catalyzed by a Novel Chiral BifunctionalN,N′-Dioxide.<br>Advanced Synthesis and Catalysis, 2006, 348, 2579-2584.                                                                        | 4.3    | 81        |
| 6  | Chiral Bisformamides as Effective Organocatalysts for the Asymmetric One-Pot, Three-Component<br>Strecker Reaction. Journal of Organic Chemistry, 2007, 72, 7715-7719.                                                             | 3.2    | 79        |
| 7  | Enantioselective Cyanosilylation of Ketones Catalyzed by a Nitrogen-Containing Bifunctional Catalyst.<br>Advanced Synthesis and Catalysis, 2006, 348, 538-544.                                                                     | 4.3    | 74        |
| 8  | A Luminescent Metal–Organic Framework Thermometer with Intrinsic Dual Emission from Organic<br>Lumophores. Chemistry - A European Journal, 2016, 22, 4460-4468.                                                                    | 3.3    | 66        |
| 9  | A Chiral Functionalized Salt atalyzed Asymmetric Michael Addition of Ketones to Nitroolefins.<br>Advanced Synthesis and Catalysis, 2007, 349, 2156-2166.                                                                           | 4.3    | 65        |
| 10 | Asymmetric Threeâ€Component Strecker Reactions Catalyzed by<br><i>trans</i> â€4â€Hydroxyâ€ <scp>L</scp> â€prolineâ€Derived <i>N</i> , <i>N′</i> â€Dioxides. Chemistry - A Eu<br>Journal, 2008, 14, 6789-6795.                      | ropean | 62        |
| 11 | Asymmetric Ring Opening of <i>meso</i> â€Epoxides with Aromatic Amines Catalyzed by a New<br>Prolineâ€Based <i>N</i> , <i>N′</i> â€Dioxideâ€Indium Tris(triflate) Complex. Advanced Synthesis and Catalysis<br>2008, 350, 385-390. | , 4.3  | 59        |
| 12 | Cu(I)-Catalyzed Diamination of Disubstituted Terminal Olefins: An Approach to Potent NK <sub>1</sub><br>Antagonist. Organic Letters, 2009, 11, 2365-2368.                                                                          | 4.6    | 58        |
| 13 | Highly Enantioselective Allylation of Aromatic αâ€Keto Phosphonates Catalyzed by Chiral<br><i>N,N′â€</i> Dioxideâ€Indium(III) Complexes. Advanced Synthesis and Catalysis, 2008, 350, 287-294.                                     | 4.3    | 45        |
| 14 | A combination of the "pillaring―strategy and chiral induction: an approach to prepare homochiral<br>three-dimensional coordination polymers from achiral precursors. Chemical Communications, 2014,<br>50, 8320.                   | 4.1    | 45        |
| 15 | Coordination tailoring of water-labile 3D MOFs to fabricate ultrathin 2D MOF nanosheets. Nanoscale, 2020, 12, 12767-12772.                                                                                                         | 5.6    | 40        |
| 16 | Homochiral Metal–Organic Frameworks with Tunable Nanoscale Channel Array and Their<br>Enantioseparation Performance against Chiral Diols. Inorganic Chemistry, 2017, 56, 6275-6280.                                                | 4.0    | 39        |
| 17 | A series of d <sup>10</sup> coordination polymers constructed with a rigid tripodal imidazole ligand<br>and varied polycarboxylates: syntheses, structures and luminescence properties. CrystEngComm, 2015,<br>17, 2004-2012.      | 2.6    | 35        |
| 18 | Homochiral Layered Coordination Polymers from Chiral <i>N</i> -Carbamylglutamate and Achiral<br>Flexible Bis(pyridine) Ligands: Syntheses, Crystal Structures, and Properties. Crystal Growth and<br>Design, 2014, 14, 6230-6238.  | 3.0    | 34        |

YUEHONG WEN

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Twofold Interpenetrated 2D MOF Nanosheets Generated by an Instant In Situ Exfoliation Method:<br>Morphology Control and Fluorescent Sensing. Advanced Materials Interfaces, 2020, 7, 2000813.   | 3.7 | 33        |
| 20 | Intercalation of chiral molecules into layered metal–organic frameworks: a strategy to synthesize homochiral MOFs. Chemical Communications, 2013, 49, 10644.                                    | 4.1 | 32        |
| 21 | Effect of anions on the self-assembly of two Cd–organic frameworks: syntheses, structural diversity and photoluminescence properties. CrystEngComm, 2015, 17, 598-603.                          | 2.6 | 30        |
| 22 | 1D to 3D and Chiral to Noncentrosymmetric Metal–Organic Complexes Controlled by the Amount of DEF Solvent: Photoluminescent and NLO Properties. Inorganic Chemistry, 2016, 55, 4199-4205.       | 4.0 | 30        |
| 23 | Stitching 2D Polymeric Layers into Flexible 3D Metal–Organic Frameworks via a Sequential<br>Self-Assembly Approach. Crystal Growth and Design, 2016, 16, 3154-3162.                             | 3.0 | 30        |
| 24 | Effect of anions on the self-assembly of Zn(ii) with a hydrogenated Schiff base ligand: structural diversity and photoluminescent properties. CrystEngComm, 2013, 15, 2714.                     | 2.6 | 29        |
| 25 | A new Cd based metal–organic framework for quick and convenient detection of trace water in<br>isopropanol and 1,4-dioxane. Journal of Materials Chemistry C, 2018, 6, 12341-12346.             | 5.5 | 29        |
| 26 | Confinement of an electron-capturing unit within an electron-donating framework for X-ray detection. Journal of Materials Chemistry C, 2016, 4, 3431-3436.                                      | 5.5 | 26        |
| 27 | Lanthanide coordination polymers assembled from triazine-based flexible polycarboxylate ligands and their luminescent properties. CrystEngComm, 2013, 15, 3560.                                 | 2.6 | 25        |
| 28 | Synthesis, structure, characterization, and multifunctional properties of a family of rare earth organic frameworks. CrystEngComm, 2017, 19, 2106-2112.                                         | 2.6 | 22        |
| 29 | From Pair Quadruple- to Single-Stranded Helices to Lines in a Mixed Ligand System via Adjusting the<br>N-Substituent of <scp>l</scp> -Glu. Inorganic Chemistry, 2015, 54, 3951-3957.            | 4.0 | 21        |
| 30 | Metal–Organic Frameworks Based on a Bent Triazole Dicarboxylic Acid: Magnetic Behaviors and<br>Selective Luminescence Sensing Properties. Crystal Growth and Design, 2019, 19, 1057-1063.       | 3.0 | 21        |
| 31 | Strategies to construct homochiral metal–organic frameworks: ligands selection and practical techniques. CrystEngComm, 2016, 18, 2792-2802.                                                     | 2.6 | 20        |
| 32 | Intercalation of Varied Sulfonates into a Layered MOC: Confinement aused Tunable Luminescence and<br>Novel Properties. Chemistry - A European Journal, 2016, 22, 5327-5334.                     | 3.3 | 18        |
| 33 | A combined bottom-up and top-down strategy to fabricate lanthanide hydrate@2D MOF composite nanosheets for direct white light emission. Journal of Materials Chemistry C, 2021, 9, 14628-14636. | 5.5 | 18        |
| 34 | Water-Stable Two-Dimensional Metal–Organic Framework Nanostructures for Fe <sup>3+</sup> Ions<br>Detection. Crystal Growth and Design, 2021, 21, 5275-5282.                                     | 3.0 | 16        |
| 35 | Self assembly of a tren-derivative hydrogenated Schiff base with transition metal ions: syntheses, crystal structures and photoluminescent properties. CrystEngComm, 2012, 14, 2879.            | 2.6 | 13        |
| 36 | A series of metal–organic frameworks containing diverse secondary building units derived from a<br>flexible triazine-based tetracarboxylic ligand. CrystEngComm, 2014, 16, 2188-2195.           | 2.6 | 12        |

YUEHONG WEN

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Two isomeric metal–organic frameworks bearing stilbene moieties for highly volatile iodine uptake.<br>Inorganic Chemistry Frontiers, 2022, 9, 3436-3443.                                                                              | 6.0 | 10        |
| 38 | Two chiral coordination polymers constructed from (1R,2R)-1,2-diaminocyclohexane derivative: Syntheses, structures and properties. Inorganic Chemistry Communication, 2015, 55, 99-102.                                               | 3.9 | 8         |
| 39 | Asymmetric Cyanosilylation of Aldehydes Catalyzed by Novel OrganoÂcatalysts. Synlett, 2005, 2005, 2445-2448.                                                                                                                          | 1.8 | 6         |
| 40 | Syntheses, crystal structures, spectroscopy, electrochemical and magnetic properties of four<br>cyanido-bridged M <sup>II</sup> –Mn <sup>III</sup> (MÂ=ÂFe,ÂRu,ÂOs)Âcomplexes. Journal of Coordination<br>Chemistry, 2015, 68, 55-70. | 2.2 | 6         |
| 41 | Benzoquinone-bridged Co <sub>2</sub> complexes with different magnetic anisotropy induced by solvent molecules. Dalton Transactions, 2017, 46, 3435-3437.                                                                             | 3.3 | 6         |
| 42 | Multiple MMCT properties of the diruthenium-based cyanido-bridged complex<br>RuVI2-NC-Ru <sup>II</sup> -CN-RuVI2. Dalton Transactions, 2022, 51, 10047-10054.                                                                         | 3.3 | 4         |
| 43 | Effects of Ru(ii/iii) redox on the Co(ii) coordination number and magnetic properties of 1D cyanide-bridged Co–Ru compounds. Dalton Transactions, 2017, 46, 1038-1041.                                                                | 3.3 | 2         |