Lynn A Raymond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6515832/publications.pdf

Version: 2024-02-01

147 papers 15,106 citations

68 h-index 119 g-index

151 all docs

151 docs citations

151 times ranked

12473 citing authors

#	Article	IF	Citations
1	Unified Huntington's disease rating scale: Reliability and consistency. Movement Disorders, 1996, 11, 136-142.	2.2	1,890
2	Cleavage at the Caspase-6 Site Is Required for Neuronal Dysfunction and Degeneration Due to Mutant Huntingtin. Cell, 2006, 125, 1179-1191.	13.5	600
3	Increased Sensitivity to N-Methyl-D-Aspartate Receptor-Mediated Excitotoxicity in a Mouse Model of Huntington's Disease. Neuron, 2002, 33, 849-860.	3.8	553
4	Extrasynaptic NMDA Receptor Involvement in Central Nervous System Disorders. Neuron, 2014, 82, 279-293.	3.8	450
5	Early Increase in Extrasynaptic NMDA Receptor Signaling and Expression Contributes to Phenotype Onset in Huntington's Disease Mice. Neuron, 2010, 65, 178-190.	3.8	448
6	N-Methyl-d-aspartate (NMDA) receptor function and excitotoxicity in Huntington's disease. Progress in Neurobiology, 2007, 81, 272-293.	2.8	346
7	CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology, 2012, 78, 690-695.	1.5	303
8	CAGâ€repeat length and the age of onset in Huntington disease (HD): A review and validation study of statistical approaches. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 397-408.	1.1	289
9	Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase. Nature, 1993, 361, 637-641.	13.7	288
10	3 Regulation of ligand-gated ion channels by protein phosphorylation. Advances in Second Messenger and Phosphoprotein Research, 1999, 33, 49-78.	4.5	281
11	Pathophysiology of Huntington's disease: time-dependent alterations in synaptic and receptor function. Neuroscience, 2011, 198, 252-273.	1.1	278
12	Early synaptic pathophysiology in neurodegeneration: insights from Huntington's disease. Trends in Neurosciences, 2010, 33, 513-523.	4.2	267
13	Palmitoylation of huntingtin by HIP14is essential for its trafficking and function. Nature Neuroscience, 2006, 9, 824-831.	7.1	266
14	Phosphorylation of amino acid neurotransmitter receptors in synaptic plasticity. Trends in Neurosciences, 1993, 16, 147-153.	4.2	251
15	Subtype-Dependence of NMDA Receptor Channel Open Probability. Journal of Neuroscience, 1999, 19, 6844-6854.	1.7	227
16	Differential Sensitivity of Recombinant <i>N</i> -Methyl-d-Aspartate Receptor Subtypes to Zinc Inhibition. Molecular Pharmacology, 1997, 51, 1015-1023.	1.0	204
17	Prediction of manifest Huntington's disease with clinical and imaging measures: a prospective observational study. Lancet Neurology, The, 2014, 13, 1193-1201.	4.9	202
18	Mutant Huntingtin Enhances Excitotoxic Cell Death. Molecular and Cellular Neurosciences, 2001, 17, 41-53.	1.0	173

#	Article	IF	CITATIONS
19	Subtype-Specific Enhancement of NMDA Receptor Currents by Mutant Huntingtin. Journal of Neurochemistry, 2008, 72, 1890-1898.	2.1	166
20	Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Molecular and Cellular Neurosciences, 2011, 48, 308-320.	1.0	164
21	Differential regulation of synaptic and extra-synaptic NMDA receptors. Nature Neuroscience, 2002, 5, 833-834.	7.1	156
22	Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington's disease. Molecular and Cellular Neurosciences, 2004, 25, 469-479.	1.0	151
23	Wild-type huntingtin protects neurons from excitotoxicity. Journal of Neurochemistry, 2006, 96, 1121-1129.	2.1	145
24	Synaptic dysfunction in progranulin-deficient mice. Neurobiology of Disease, 2012, 45, 711-722.	2.1	144
25	Cerebral cortex structure in prodromal Huntington disease. Neurobiology of Disease, 2010, 40, 544-554.	2.1	142
26	Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death. Journal of Cell Biology, 2017, 216, 1091-1105.	2.3	140
27	Competition between Phasic and Asynchronous Release for Recovered Synaptic Vesicles at Developing Hippocampal Autaptic Synapses. Journal of Neuroscience, 2004, 24, 420-433.	1.7	138
28	Selective Neuronal Degeneration in Huntington's Disease. Current Topics in Developmental Biology, 2006, 75, 25-71.	1.0	136
29	Motor abnormalities in premanifest persons with Huntington's disease: The PREDICTâ€HD study. Movement Disorders, 2009, 24, 1763-1772.	2.2	128
30	Earliest functional declines in Huntington disease. Psychiatry Research, 2010, 178, 414-418.	1.7	128
31	Inhibition of transglutaminase 2 mitigates transcriptional dysregulation in models of Huntington disease. EMBO Molecular Medicine, 2010, 2, 349-370.	3.3	124
32	Differential Susceptibility to Excitotoxic Stress in YAC128 Mouse Models of Huntington Disease between Initiation and Progression of Disease. Journal of Neuroscience, 2009, 29, 2193-2204.	1.7	123
33	Opposing Roles of Synaptic and Extrasynaptic NMDA Receptor Signaling in Cocultured Striatal and Cortical Neurons. Journal of Neuroscience, 2012, 32, 3992-4003.	1.7	121
34	A Calcium-Dependent Feedback Mechanism Participates in Shaping Single NMDA Miniature EPSCs. Journal of Neuroscience, 2001, 21, 1.1-9.	1.7	115
35	Corticostriatal synaptic function in mouse models of Huntington's disease: early effects of huntingtin repeat length and protein load. Journal of Physiology, 2007, 585, 817-831.	1.3	115
36	Altered NMDA Receptor Trafficking in a Yeast Artificial Chromosome Transgenic Mouse Model of Huntington's Disease. Journal of Neuroscience, 2007, 27, 3768-3779.	1.7	112

#	Article	IF	CITATIONS
37	Mitochondrial Sensitivity and Altered Calcium Handling Underlie Enhanced NMDA-Induced Apoptosis in YAC128 Model of Huntington's Disease. Journal of Neuroscience, 2007, 27, 13614-13623.	1.7	111
38	Huntingtin Interacting Protein 1 Induces Apoptosis via a Novel Caspase-dependent Death Effector Domain. Journal of Biological Chemistry, 2000, 275, 41299-41308.	1.6	108
39	Striatal neuronal apoptosis is preferentially enhanced by NMDA receptor activation in YAC transgenic mouse model of Huntington disease. Neurobiology of Disease, 2006, 21, 392-403.	2.1	108
40	Enhanced Striatal NR2B-Containing N-Methyl-d-Aspartate Receptor-Mediated Synaptic Currents in a Mouse Model of Huntington Disease. Journal of Neurophysiology, 2004, 92, 2738-2746.	0.9	107
41	A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in Huntington disease. Neurology, 2017, 88, 152-159.	1.5	104
42	Dopaminergic Modulation of Excitatory Postsynaptic Currents in Rat Neostriatal Neurons. Journal of Neurophysiology, 1997, 78, 1248-1255.	0.9	103
43	Altered palmitoylation and neuropathological deficits in mice lacking HIP14. Human Molecular Genetics, 2011, 20, 3899-3909.	1.4	103
44	Disruption of the endocytic protein HIP1 results in neurological deficits and decreased AMPA receptor trafficking. EMBO Journal, 2003, 22, 3254-3266.	3.5	102
45	Functional NMDA Receptor Subtype 2B Is Expressed in Astrocytes after Ischemialn Vivoand Anoxialn Vitro. Journal of Neuroscience, 2003, 23, 3364-3372.	1.7	101
46	Mechanisms of synaptic dysfunction and excitotoxicity in Huntington's disease. Drug Discovery Today, 2014, 19, 990-996.	3.2	101
47	Perceptions of genetic discrimination among people at risk for Huntington's disease: a cross sectional survey. BMJ: British Medical Journal, 2009, 338, b2175-b2175.	2.4	98
48	D1 Dopamine Receptor-Induced Cyclic AMP-Dependent Protein Kinase Phosphorylation and Potentiation of Striatal Glutamate Receptors. Journal of Neurochemistry, 2002, 73, 2441-2446.	2.1	97
49	Role of NR2B-type NMDA receptors in selective neurodegeneration in Huntington disease. Neurobiology of Aging, 2003, 24, 1113-1121.	1.5	97
50	Striatal Volume Contributes to the Prediction of Onset of Huntington Disease in Incident Cases. Biological Psychiatry, 2012, 71, 822-828.	0.7	95
51	Cleavage at the 586 Amino Acid Caspase-6 Site in Mutant huntingtin Influences Caspase-6 Activation <i>In Vivo</i> Iournal of Neuroscience, 2010, 30, 15019-15029.	1.7	94
52	Real-time imaging of glutamate clearance reveals normal striatal uptake in Huntington disease mouse models. Nature Communications, 2016, 7, 11251.	5.8	91
53	Cognitive domains that predict time to diagnosis in prodromal Huntington disease. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 612-619.	0.9	90
54	Alterations in synaptic function and plasticity in Huntington disease. Journal of Neurochemistry, 2019, 150, 346-365.	2.1	90

#	Article	IF	CITATIONS
55	Huntingtin suppression restores cognitive function in a mouse model of Huntington's disease. Science Translational Medicine, 2018, 10, .	5.8	89
56	Channels formed by colicin E1 in planar lipid bilayers are large and exhibit pH-dependent ion selectivity. Journal of Membrane Biology, 1985, 84, 173-181.	1.0	85
57	Interaction of Postsynaptic Density Protein-95 with NMDA Receptors Influences Excitotoxicity in the Yeast Artificial Chromosome Mouse Model of Huntington's Disease. Journal of Neuroscience, 2009, 29, 10928-10938.	1.7	85
58	An enhanced Q175 knock-in mouse model of Huntington disease with higher mutant huntingtin levels and accelerated disease phenotypes. Human Molecular Genetics, 2016, 25, 3654-3675.	1.4	85
59	Natural History of Huntington Disease. JAMA Neurology, 2013, 70, 1520-30.	4.5	84
60	LRRK2 overexpression alters glutamatergic presynaptic plasticity, striatal dopamine tone, postsynaptic signal transduction, motor activity and memory. Human Molecular Genetics, 2015, 24, 1336-1349.	1.4	84
61	Interrater agreement in the assessment of motor manifestations of Huntington's disease. Movement Disorders, 2005, 20, 293-297.	2.2	83
62	Suicidal ideation in Huntington disease: The role of comorbidity. Psychiatry Research, 2011, 188, 372-376.	1.7	82
63	Progranulin Deficiency Decreases Gross Neural Connectivity But Enhances Transmission at Individual Synapses. Journal of Neuroscience, 2011, 31, 11126-11132.	1.7	78
64	Levels of mutant huntingtin influence the phenotypic severity of Huntington disease in YAC128 mouse models. Neurobiology of Disease, 2006, 21, 444-455.	2.1	77
65	Striatal synaptic dysfunction and altered calcium regulation in Huntington disease. Biochemical and Biophysical Research Communications, 2017, 483, 1051-1062.	1.0	76
66	Calpain and STriatal-Enriched protein tyrosine Phosphatase (STEP) activation contribute to extrasynaptic NMDA receptor localization in a Huntington's disease mouse model. Human Molecular Genetics, 2012, 21, 3739-3752.	1.4	75
67	Dietary intake in adults at risk for Huntington disease. Neurology, 2009, 73, 385-392.	1.5	74
68	Early changes in the hypothalamic region in prodromal Huntington disease revealed by MRI analysis. Neurobiology of Disease, 2010, 40, 531-543.	2.1	74
69	P38 MAPK is involved in enhanced NMDA receptor-dependent excitotoxicity in YAC transgenic mouse model of Huntington disease. Neurobiology of Disease, 2012, 45, 999-1009.	2.1	74
70	Mitigation of augmented extrasynaptic NMDAR signaling and apoptosis in cortico-striatal co-cultures from Huntington's disease mice. Neurobiology of Disease, 2012, 48, 40-51.	2.1	74
71	Chronic blockade of extrasynaptic NMDA receptors ameliorates synaptic dysfunction and pro-death signaling in Huntington disease transgenic mice. Neurobiology of Disease, 2014, 62, 533-542.	2.1	74
72	Polyglutamine-Modulated Striatal Calpain Activity in YAC Transgenic Huntington Disease Mouse Model: Impact on NMDA Receptor Function and Toxicity. Journal of Neuroscience, 2008, 28, 12725-12735.	1.7	68

#	Article	IF	CITATIONS
73	Developmental Decrease in NMDA Receptor Desensitization Associated with Shift to Synapse and Interaction with Postsynaptic Density-95. Journal of Neuroscience, 2003, 23, 11244-11254.	1.7	66
74	Refining the diagnosis of Huntington disease: the PREDICT-HD study. Frontiers in Aging Neuroscience, 2013, 5, 12.	1.7	66
75	Calcium buffering and protection from excitotoxic cell death by exogenous calbindin-D28k in HEK 293 cells. Cell Calcium, 2001, 29, 277-287.	1.1	65
76	Challenges assessing clinical endpoints in early Huntington disease. Movement Disorders, 2010, 25, 2595-2603.	2.2	65
77	80HdG as a marker for Huntington disease progression. Neurobiology of Disease, 2012, 46, 625-634.	2.1	58
78	Regional Atrophy Associated with Cognitive and Motor Function in Prodromal Huntington Disease. Journal of Huntington's Disease, 2013, 2, 477-489.	0.9	58
79	Characterization of depression in prodromal Huntington disease in the neurobiological predictors of HD (PREDICT-HD) study. Journal of Psychiatric Research, 2013, 47, 1423-1431.	1.5	54
80	A Randomized, Double-blind, Placebo-Controlled Study of Latrepirdine in Patients With Mild to Moderate Huntington Disease. JAMA Neurology, 2013, 70, 25.	4.5	53
81	Gating of a voltage-dependent channel (colicin E1) in planar lipid bilayers: the role of protein translocation. Journal of Membrane Biology, 1986, 92, 247-254.	1.0	50
82	Tracking motor impairments in the progression of Huntington's disease. Movement Disorders, 2014, 29, 311-319.	2.2	49
83	Cognitive Reserve and Brain Reserve in Prodromal Huntington's Disease. Journal of the International Neuropsychological Society, 2013, 19, 739-750.	1.2	48
84	Glutamate Receptor Ion Channel Properties Predict Vulnerability to Cytotoxicity in a Transfected Nonneuronal Cell Line. Molecular and Cellular Neurosciences, 1996, 7, 102-115.	1.0	46
85	Genetic rescue of CB1 receptors on medium spiny neurons prevents loss of excitatory striatal synapses but not motor impairment in HD mice. Neurobiology of Disease, 2014, 71, 140-150.	2.1	46
86	Memory and synaptic deficits in <i>Hip14/DHHC17</i> knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20296-20301.	3.3	45
87	Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington disease mouse model. Neurobiology of Disease, 2016, 86, 62-74.	2.1	44
88	Depressive symptom severity is related to poorer cognitive performance in prodromal Huntington disease Neuropsychology, 2012, 26, 664-669.	1.0	43
89	Caudate volume as an outcome measure in clinical trials for Huntington's disease: a pilot study. Brain Research Bulletin, 2003, 62, 137-141.	1.4	42
90	Perception, experience, and response to genetic discrimination in Huntington disease: The international RESPONDâ€HD study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1081-1093.	1.1	42

#	Article	IF	Citations
91	Impairment and Restoration of Homeostatic Plasticity in Cultured Cortical Neurons From a Mouse Model of Huntington Disease. Frontiers in Cellular Neuroscience, 2019, 13, 209.	1.8	41
92	Gating of a voltage-dependent channel (colicin E1) in planar lipid bilayers: translocation of regions outside the channel-forming domain. Journal of Membrane Biology, 1986, 92, 255-268.	1.0	40
93	Dysfunctional striatal dopamine signaling in Huntington's disease. Journal of Neuroscience Research, 2019, 97, 1636-1654.	1.3	39
94	Modulation of NMDA-mediated excitotoxicity by protein kinase C. Journal of Neurochemistry, 2001, 78, 715-726.	2.1	38
95	Clinical-Genetic Associations in the Prospective Huntington at Risk Observational Study (PHAROS). JAMA Neurology, 2016, 73, 102.	4.5	38
96	Life Without Huntingtin. Normal Differentiation into FunctionalNeurons. Journal of Neurochemistry, 1999, 72, 1009-1018.	2.1	37
97	Beyond the patient: The broader impact of genetic discrimination among individuals at risk of Huntington disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2012, 159B, 217-226.	1.1	37
98	Relationship of Mediterranean Diet and Caloric Intake to Phenoconversion in Huntington Disease. JAMA Neurology, 2013, 70, 1382-8.	4.5	37
99	Impaired development of cortico-striatal synaptic connectivity in a cell culture model of Huntington's disease. Neurobiology of Disease, 2016, 87, 80-90.	2.1	35
100	Striatal Synaptic Dysfunction and Hippocampal Plasticity Deficits in the Hu97/18 Mouse Model of Huntington Disease. PLoS ONE, 2014, 9, e94562.	1.1	35
101	In their own words: Reports of stigma and genetic discrimination by people at risk for Huntington disease in the International RESPONDâ€HD study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1150-1159.	1.1	33
102	Comorbidities of Obsessive and Compulsive Symptoms in Huntington's Disease. Journal of Nervous and Mental Disease, 2010, 198, 334-338.	0.5	33
103	WHODAS 2.0 in prodromal Huntington disease: measures of functioning in neuropsychiatric disease. European Journal of Human Genetics, 2014, 22, 958-963.	1.4	33
104	Alterations in STriatalâ€Enriched protein tyrosine Phosphatase expression, activation, and downstream signaling in early and late stages of the <scp>YAC</scp> 128 Huntington's disease mouse model. Journal of Neurochemistry, 2014, 130, 145-159.	2.1	32
105	Bidirectional Control of Postsynaptic Density-95 (PSD-95) Clustering by Huntingtin. Journal of Biological Chemistry, 2014, 289, 3518-3528.	1.6	30
106	Site within N-Methyl-d-aspartate Receptor Pore Modulates Channel Gating. Molecular Pharmacology, 2004, 65, 157-164.	1.0	29
107	NMDA Receptor Desensitization Regulated by Direct Binding to PDZ1-2 Domains of PSD-95. Journal of Neurophysiology, 2008, 99, 3052-3062.	0.9	29
108	Cause or compensation?—Altered neuronal Ca ²⁺ handling in Huntington's disease. CNS Neuroscience and Therapeutics, 2018, 24, 301-310.	1.9	29

7

#	Article	IF	Citations
109	Communicating Clinical Trial Results to Research Participants. Archives of Neurology, 2008, 65, 1590.	4.9	28
110	Endocannabinoid-Specific Impairment in Synaptic Plasticity in Striatum of Huntington's Disease Mouse Model. Journal of Neuroscience, 2018, 38, 544-554.	1.7	28
111	Changes in Agonist Concentration Dependence That Are a Function of Duration of Exposure SuggestN-Methyl-d-aspartate Receptor Nonsaturation during Synaptic Stimulation. Molecular Pharmacology, 2001, 59, 212-219.	1.0	27
112	HttQ111/+ Huntington's Disease Knock-in Mice Exhibit Brain Region-Specific Morphological Changes and Synaptic Dysfunction. Journal of Huntington's Disease, 2018, 7, 17-33.	0.9	27
113	Altered Regulation of Striatal Neuronal N-Methyl-D-Aspartate Receptor Trafficking by Palmitoylation in Huntington Disease Mouse Model. Frontiers in Synaptic Neuroscience, 2019, 11, 3.	1.3	27
114	An Automated Home-Cage System to Assess Learning and Performance of a Skilled Motor Task in a Mouse Model of Huntington's Disease. ENeuro, 2017, 4, ENEURO.0141-17.2017.	0.9	26
115	<i>N</i> à€Methylâ€ <scp>d</scp> â€aspartate receptor subunitâ€and neuronalâ€type dependence of excitotoxic signaling through postâ€synaptic density 95. Journal of Neurochemistry, 2010, 115, 1045-1056.	2.1	25
116	Inhibition of Calcium-Dependent NMDA Receptor Current Rundown by Calbindin-D28k. Journal of Neurochemistry, 1999, 72, 634-642.	2.1	23
117	Sudden death due to paralysis and synaptic and behavioral deficits when Hip14/Zdhhc17 is deleted in adult mice. BMC Biology, 2016, 14, 108.	1.7	22
118	Protective up-regulation of CK2 by mutant huntingtin in cells co-expressing NMDA receptors. Journal of Neurochemistry, 2007, 104, 071106220454003-???.	2.1	21
119	Excitotoxicity in Huntington disease. Clinical Neuroscience Research, 2003, 3, 121-128.	0.8	20
120	Targeting energy metabolism in Huntington's disease. Lancet, The, 2004, 364, 312-313.	6.3	20
121	Direct assessment of presynaptic modulation of cortico-striatal glutamate release in a Huntington's disease mouse model. Journal of Neurophysiology, 2018, 120, 3077-3084.	0.9	20
122	Altering cortical input unmasks synaptic phenotypes in the YAC128 cortico-striatal co-culture model of Huntington disease. BMC Biology, 2018, 16, 58.	1.7	19
123	Motor onset and diagnosis in Huntington disease using the diagnostic confidence level. Journal of Neurology, 2015, 262, 2691-2698.	1.8	17
124	Performance of the 12-item WHODAS 2.0 in prodromal Huntington disease. European Journal of Human Genetics, 2015, 23, 1584-1587.	1.4	16
125	Estimating Premorbid IQ in the Prodromal Phase of a Neurodegenerative Disease. Clinical Neuropsychologist, 2011, 25, 757-777.	1.5	15
126	Characteristics and outcomes of Canadian MD/PhD program graduates: a cross-sectional survey. CMAJ Open, 2017, 5, E308-E314.	1.1	15

#	Article	IF	Citations
127	Factors associated with experiences of genetic discrimination among individuals at risk for huntington disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 19-27.	1.1	14
128	DAPK1 Promotes Extrasynaptic GluN2B Phosphorylation and Striatal Spine Instability in the YAC128 Mouse Model of Huntington Disease. Frontiers in Cellular Neuroscience, 2020, 14, 590569.	1.8	14
129	Region-specific Pro-survival Signaling and Global Neuronal Protection by Wild-type Huntingtin. Journal of Huntington's Disease, 2014, 3, 365-376.	0.9	13
130	Regulation of hippocampal excitatory synapses by the Zdhhc5 palmitoyl acyltransferase. Journal of Cell Science, 2021, 134, .	1.2	13
131	Competitive Inhibition of NMDA Receptor–Mediated Currents by Extracellular Calcium Chelators. Journal of Neurophysiology, 2000, 84, 693-697.	0.9	11
132	Canadian Association of Neurosciences Review: Polyglutamine Expansion Neurodegenerative Diseases. Canadian Journal of Neurological Sciences, 2006, 33, 278-291.	0.3	11
133	PiDose: an open-source system for accurate and automated oral drug administration to group-housed mice. Scientific Reports, 2020, 10, 11584.	1.6	10
134	Development of the Huntington Disease Work Function Scale. Journal of Occupational and Environmental Medicine, 2012, 54, 1300-1308.	0.9	9
135	Decreasing Levels of the cdk5 Activators, p25 and p35, Reduces Excitotoxicity in Striatal Neurons. Journal of Huntington's Disease, 2012, 1, 89-96.	0.9	9
136	Altered cortical processing of sensory input in Huntington disease mouse models. Neurobiology of Disease, 2022, 169, 105740.	2.1	9
137	Agonist-Induced Changes in Substituted Cysteine Accessibility Reveal Dynamic Extracellular Structure of M3–M4 Loop of Glutamate Receptor GluR6. Journal of Neuroscience, 1999, 19, 644-652.	1.7	8
138	Influence of cortical synaptic input on striatal neuronal dendritic arborization and sensitivity to excitotoxicity in corticostriatal coculture. Journal of Neurophysiology, 2016, 116, 380-390.	0.9	7
139	Huntington Disease., 2015,, 303-320.		6
140	Synaptic Abnormalities Associated with Huntington's Disease. , 2006, , 457-471.		5
141	NMDA Receptors and Huntington's Disease. Frontiers in Neuroscience, 2008, , 17-40.	0.0	4
142	Treatment of Huntington Disease and Comorbid Trichotillomania With Aripiprazole. Journal of Neuropsychiatry and Clinical Neurosciences, 2015, 27, e211-e212.	0.9	4
143	Impaired Refinement of Kinematic Variability in Huntington Disease Mice on an Automated Home Cage Forelimb Motor Task. Journal of Neuroscience, 2021, 41, 8589-8602.	1.7	4
144	It's Not Necessarily All about the Delivery in Huntington's Disease. Neuron, 2014, 83, 6-8.	3.8	3

#	Article	IF	CITATIONS
145	Molecular Pathogenesis of Huntington's Disease: The Role of Excitotoxicity. , 2006, , 251-260.		1
146	Impaired Replenishment of Cortico-Striatal Synaptic Glutamate in Huntington's Disease Mouse Model. Journal of Huntington's Disease, 2020, 9, 149-161.	0.9	1
147	Huntington's Disease. Neurological Disease and Therapy, 2005, , 351-376.	0.0	O