
## Brian J Oldfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6515619/publications.pdf Version: 2024-02-01



RDIAN LOLDEIELD

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The brain renin–angiotensin system: location and physiological roles. International Journal of<br>Biochemistry and Cell Biology, 2003, 35, 901-918.                                                                     | 2.8 | 445       |
| 2  | The orexin system regulates alcohol-seeking in rats. British Journal of Pharmacology, 2006, 148, 752-759.                                                                                                               | 5.4 | 350       |
| 3  | Localization and Characterization of Insulin Receptors in Rat Brain and Pituitary Gland Using <i>in<br/>Vitro</i> Autoradiography and Computerized Densitometry*. Endocrinology, 1987, 121, 1562-1570.                  | 2.8 | 302       |
| 4  | The neurochemical characterisation of hypothalamic pathways projecting polysynaptically to brown adipose tissue in the rat. Neuroscience, 2002, 110, 515-526.                                                           | 2.3 | 285       |
| 5  | Fos production in retrogradely labelled neurons of the lamina terminalis following intravenous infusion of either hypertonic saline or angiotensin II. Neuroscience, 1994, 60, 255-262.                                 | 2.3 | 199       |
| 6  | Vasopressin Secretion: Osmotic and Hormonal Regulation by the Lamina Terminalis. Journal of Neuroendocrinology, 2004, 16, 340-347.                                                                                      | 2.6 | 194       |
| 7  | Direct Control of Brown Adipose Tissue Thermogenesis by Central Nervous System Glucagon-Like<br>Peptide-1 Receptor Signaling. Diabetes, 2012, 61, 2753-2762.                                                            | 0.6 | 188       |
| 8  | Intravenous angiotensin II induces Fos-immunoreactivity in circumventricular organs of the lamina<br>terminalis. Brain Research, 1992, 594, 295-300.                                                                    | 2.2 | 159       |
| 9  | Gonadotropin-Inhibitory Hormone Is a Hypothalamic Peptide That Provides a Molecular Switch between Reproduction and Feeding. Neuroendocrinology, 2012, 95, 305-316.                                                     | 2.5 | 159       |
| 10 | The Sensory Circumventricular Organs of the Mammalian Brain. Advances in Anatomy, Embryology and<br>Cell Biology, 2003, 172, III-XII, 1-122, back cover.                                                                | 1.6 | 157       |
| 11 | Intravenous hypertonic saline induces Fos immunoreactivity in neurons throughout the lamina terminalis. Brain Research, 1991, 561, 151-156.                                                                             | 2.2 | 154       |
| 12 | Activation of Thermogenesis in Brown Adipose Tissue and Dysregulated Lipid Metabolism Associated with Cancer Cachexia in Mice. Cancer Research, 2012, 72, 4372-4382.                                                    | 0.9 | 133       |
| 13 | INTERACTION OF CIRCULATING HORMONES WITH THE BRAIN: THE ROLES OF THE SUBFORNICAL ORGAN AND THE ORGANUM VASCULOSUM OF THE LAMINA TERMINALIS. Clinical and Experimental Pharmacology and Physiology, 1998, 25, S61-7.     | 1.9 | 132       |
| 14 | An analysis of the sympathetic preganglionic neurons projecting from the upper thoracic spinal roots of the cat. Journal of Comparative Neurology, 1981, 196, 329-345.                                                  | 1.6 | 114       |
| 15 | A comparison of hypotensive and non-hypotensive hemorrhage on Fos expression in spinally<br>projecting neurons of the paraventricular nucleus and rostral ventrolateral medulla. Brain<br>Research, 1993, 610, 216-223. | 2.2 | 104       |
| 16 | Identification of neural pathways activated in dehydrated rats by means of Fos-immunohistochemistry and neural tracing. Brain Research, 1994, 653, 305-314.                                                             | 2.2 | 104       |
| 17 | Projections of RFamideâ€related Peptideâ€3 Neurones in the Ovine Hypothalamus, with Special Reference<br>to Regions Regulating Energy Balance and Reproduction. Journal of Neuroendocrinology, 2009, 21,<br>690-697.    | 2.6 | 103       |
| 18 | Circulating relaxin acts on subfornical organ neurons to stimulate water drinking in the rat.<br>Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1701-1706.                  | 7.1 | 99        |

| #  | Article                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The lamina terminalis and its role in fluid and electrolyte homeostasis. Journal of Clinical Neuroscience, 1999, 6, 289-301.                                                                                                                                                               | 1.5 | 97        |
| 20 | Localization and Characterization of Insulinâ€Like Growth Factorâ€l Receptors in Rat Brain and Pituitary<br>Gland Using <i>in vitro</i> Autoradiography and Computerized Densitometry* A Distinct Distribution<br>from Insulin Receptors. Journal of Neuroendocrinology, 1989, 1, 369-377. | 2.6 | 93        |
| 21 | The Role of Thermogenesis in Antipsychotic Drugâ€induced Weight Gain. Obesity, 2009, 17, 16-24.                                                                                                                                                                                            | 3.0 | 93        |
| 22 | Distribution of hypothalamic, medullary and lamina terminalis neurons expressing Fos after hemorrhage in conscious rats. Brain Research, 1992, 582, 323-328.                                                                                                                               | 2.2 | 90        |
| 23 | Comparison of c-fos expression in the lamina terminalis of conscious rats after intravenous or intracerebroventricular angiotensin. Brain Research Bulletin, 1995, 37, 131-137.                                                                                                            | 3.0 | 90        |
| 24 | The Effects of Rimonabant on Brown Adipose Tissue in Rat: Implications for Energy Expenditure.<br>Obesity, 2009, 17, 254-261.                                                                                                                                                              | 3.0 | 89        |
| 25 | Neural Pathways From The Lamina Terminalis Influencing Cardiovascular And Body Fluid Homeostasis.<br>Clinical and Experimental Pharmacology and Physiology, 2001, 28, 990-992.                                                                                                             | 1.9 | 87        |
| 26 | ANTEROVENTRAL WALL OF THE THIRD VENTRICLE AND DORSAL LAMINA TERMINALIS: HEADQUARTERS FOR CONTROL OF BODY FLUID HOMEOSTASIS?. Clinical and Experimental Pharmacology and Physiology, 1996, 23, 271-281.                                                                                     | 1.9 | 86        |
| 27 | CNS Leptin Action Modulates Immune Response and Survival in Sepsis. Journal of Neuroscience, 2010, 30, 6036-6047.                                                                                                                                                                          | 3.6 | 86        |
| 28 | Physiological and pathophysiological influences on thirst. Physiology and Behavior, 2004, 81, 795-803.                                                                                                                                                                                     | 2.1 | 84        |
| 29 | Chapter 51: Efferent neural pathways of the lamina terminalis subserving osmoregulation. Progress in<br>Brain Research, 1992, 91, 395-402.                                                                                                                                                 | 1.4 | 81        |
| 30 | Brown adipose tissue thermogenesis heats brain and body as part of the brain-coordinated ultradian basic rest-activity cycle. Neuroscience, 2009, 164, 849-861.                                                                                                                            | 2.3 | 80        |
| 31 | Anti-Obesity Effect of the CB2 Receptor Agonist JWH-015 in Diet-Induced Obese Mice. PLoS ONE, 2015, 10, e0140592.                                                                                                                                                                          | 2.5 | 78        |
| 32 | Characterization of a Specific Antibody to the Rat Angiotensin II AT <sub>1</sub> Receptor. Journal of Histochemistry and Cytochemistry, 1999, 47, 507-515.                                                                                                                                | 2.5 | 75        |
| 33 | Visualization of functionally activated circuitry in the brain. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3252-3257.                                                                                                                      | 7.1 | 69        |
| 34 | Efferent Neural Projections of Angiotensin Receptor (AT1) Expressing Neurones in the Hypothalamic<br>Paraventricular Nucleus of the Rat. Journal of Neuroendocrinology, 2001, 13, 139-146.                                                                                                 | 2.6 | 67        |
| 35 | An anatomic basis for the communication of hypothalamic, cortical and mesolimbic circuitry in the regulation of energy balance. European Journal of Neuroscience, 2009, 30, 415-430.                                                                                                       | 2.6 | 66        |
| 36 | Efferent connections of the lamina terminalis, the preoptic area and the insular cortex to<br>submandibular and sublingual gland of the rat traced with pseudorabies virus. Brain Research, 1998,<br>806, 219-231.                                                                         | 2.2 | 64        |

| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A combined electron microscopic HRP and immunocytochemical study of the limbic projections to rat<br>hypothalamic nuclei containing vasopressin and oxytocin neurons. Journal of Comparative<br>Neurology, 1985, 231, 221-231.                                           | 1.6 | 63        |
| 38 | The Cannabinoid Receptor Agonist THC Attenuates Weight Loss in a Rodent Model of Activity-Based Anorexia. Neuropsychopharmacology, 2011, 36, 1349-1358.                                                                                                                  | 5.4 | 63        |
| 39 | The noradrenergic innervation of vasopressin neurons in the paraventricular nucleus of the<br>hypothalamus: An ultrastructural study using radioautography and immunocytochemistry. Brain<br>Research, 1985, 325, 215-229.                                               | 2.2 | 62        |
| 40 | Neurochemical Characterization and Sexual Dimorphism of Projections from the Brain to Abdominal and Subcutaneous White Adipose Tissue in the Rat. Journal of Neuroscience, 2012, 32, 15913-15921.                                                                        | 3.6 | 62        |
| 41 | Median preoptic nucleus projections to vasopressin-containing neurones of the supraoptic nucleus in sheep. A light and electron microscopic study. Brain Research, 1991, 542, 193-200.                                                                                   | 2.2 | 61        |
| 42 | Projections from the subfornical organ to the supraoptic nucleus in the rat: ultrastructural identification of an interposed synapse in the median preoptic nucleus using a combination of neuronal tracers. Brain Research, 1991, 558, 13-19.                           | 2.2 | 60        |
| 43 | Distribution of Fos Immunoreactivity in the Lamina Terminalis and Hypothalamus Induced by Centrally<br>Administered Relaxin in Conscious Rats. Journal of Neuroendocrinology, 1997, 9, 431-437.                                                                          | 2.6 | 60        |
| 44 | The Role of Mesolimbic Reward Neurocircuitry in Prevention and Rescue of the Activity-Based Anorexia (ABA) Phenotype in Rats. Neuropsychopharmacology, 2017, 42, 2292-2300.                                                                                              | 5.4 | 60        |
| 45 | The trajectory of sensory pathways from the lamina terminalis to the insular and cingulate cortex: a neuroanatomical framework for the generation of thirst. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R1390-R1401. | 1.8 | 59        |
| 46 | Localization of sensory neurons traversing the stellate ganglion of the cat. Journal of Comparative Neurology, 1978, 182, 915-922.                                                                                                                                       | 1.6 | 58        |
| 47 | A Light microscopic HRP study of limbic projections to the vasopressin-containing nuclear groups of the hypothalamus. Brain Research Bulletin, 1985, 14, 143-157.                                                                                                        | 3.0 | 57        |
| 48 | Brain Angiotensin and Body Fluid Homeostasis The Japanese Journal of Physiology, 2001, 51, 281-289.                                                                                                                                                                      | 0.9 | 56        |
| 49 | Effect of central administration of QRFP(26) peptide on energy balance and characterization of a second QRFP receptor in rat. Brain Research, 2006, 1119, 133-149.                                                                                                       | 2.2 | 56        |
| 50 | The Endogenous Actions of Hypothalamic Peptides on Brown Adipose Tissue Thermogenesis in the Rat.<br>Endocrinology, 2010, 151, 4236-4246.                                                                                                                                | 2.8 | 56        |
| 51 | Water Intake and the Neural Correlates of the Consciousness of Thirst. Seminars in Nephrology, 2006, 26, 249-257.                                                                                                                                                        | 1.6 | 52        |
| 52 | From sensory circumventricular organs to cerebral cortex: Neural pathways controlling thirst and hunger. Journal of Neuroendocrinology, 2019, 31, e12689.                                                                                                                | 2.6 | 52        |
| 53 | Uptake and retrograde transport of HRP by axons of intact and damaged peripheral nerve trunks.<br>Neuroscience Letters, 1977, 6, 135-141.                                                                                                                                | 2.1 | 50        |
| 54 | Substance P-containing sensory neurons in the rat dorsal root ganglia innervate the adrenal medulla.<br>Journal of the Autonomic Nervous System, 1991, 33, 247-254.                                                                                                      | 1.9 | 50        |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Distribution of bradykinin B2 receptors in sheep brain and spinal cord visualized by in vitro autoradiography. , 1997, 381, 203-218.                                                                                                   |     | 50        |
| 56 | Lateral hypothalamic â€~command neurons' with axonal projections to regions involved in both feeding and thermogenesis. European Journal of Neuroscience, 2007, 25, 2404-2412.                                                         | 2.6 | 50        |
| 57 | Hemorrhage induces c-fos immunoreactivity in spinally projecting neurons of cat subretrofacial nucleus. Brain Research, 1992, 575, 329-332.                                                                                            | 2.2 | 49        |
| 58 | Technique for the simultaneous ultrastructural demonstration of anterogradely transported horseradish peroxidase and an immunocytochemically identified neuropeptide Journal of Histochemistry and Cytochemistry, 1983, 31, 1145-1150. | 2.5 | 46        |
| 59 | Circulating Angiotensin II Activates Neurones in Circumventricular Organs of the Lamina Terminalis<br>That Project to the Bed Nucleus of the Stria Terminalis. Journal of Neuroendocrinology, 2003, 15,<br>725-731.                    | 2.6 | 46        |
| 60 | Localization of angiotensin IV binding sites to motor and sensory neurons in the sheep spinal cord and hindbrain. Brain Research, 1995, 701, 301-306.                                                                                  | 2.2 | 43        |
| 61 | An Ultrastructural Analysis of the Distribution of Angiotensin II in the Rat Brain. Journal of<br>Neuroendocrinology, 1989, 1, 121-128.                                                                                                | 2.6 | 42        |
| 62 | Localization of barosensitive neurons in the caudal ventrolateral medulla which project to the rostral ventrolateral medulla. Brain Research, 1994, 657, 258-268.                                                                      | 2.2 | 42        |
| 63 | Synaptic input to vasopressin neurons of the paraventricular nucleus (PVN). Peptides, 1984, 5, 139-150.                                                                                                                                | 2.4 | 41        |
| 64 | The brain angiotensin system Insights from mapping its components. Trends in Endocrinology and Metabolism, 1990, 1, 189-198.                                                                                                           | 7.1 | 41        |
| 65 | IUGR in the Absence of Postnatal "Catch-Up―Growth Leads to Improved Whole Body Insulin Sensitivity<br>in Rat Offspring. Pediatric Research, 2011, 70, 339-344.                                                                         | 2.3 | 40        |
| 66 | The segmental origin of preganglionic axons in the upper thoracic rami of the cat. Neuroscience<br>Letters, 1980, 18, 11-17.                                                                                                           | 2.1 | 39        |
| 67 | Identification of Efferent Neural Pathways from the Lamina Terminalis Activated by Blood-Borne<br>Relaxin. Journal of Neuroendocrinology, 2001, 13, 432-437.                                                                           | 2.6 | 39        |
| 68 | Structural and functional evidence supporting a role for leptin in central neural pathways influencing blood pressure in rats. Experimental Physiology, 2005, 90, 689-696.                                                             | 2.0 | 39        |
| 69 | Ultrastructural identification of noradrenergic nerve terminals and vasopressin-containing neurons<br>of the paraventricular nucleus in the same thin section Journal of Histochemistry and<br>Cytochemistry, 1983, 31, 1151-1156.     | 2.5 | 37        |
| 70 | Localization of hindlimb vasomotor neurones in the lumbar spinal cord of the guinea pig.<br>Neuroscience Letters, 1985, 54, 269-275.                                                                                                   | 2.1 | 37        |
| 71 | Neurons in the median preoptic nucleus of the rat with collateral branches to the subfornical organ and supraoptic nucleus. Brain Research, 1992, 586, 86-90.                                                                          | 2.2 | 36        |
| 72 | Involvement of hypothalamic peptides in the anorectic action of the CB <sub>1</sub> receptor antagonist rimonabant (SR 141716). European Journal of Neuroscience, 2009, 29, 2207-2216.                                                 | 2.6 | 36        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Neural and humoral changes associated with the adjustable gastric band: insights from a rodent model. International Journal of Obesity, 2012, 36, 1403-1411.                                                                                                                                                                                               | 3.4 | 36        |
| 74 | Characterization of the central neural projections to brown, white, and beige adipose tissue. FASEB Journal, 2017, 31, 4879-4890.                                                                                                                                                                                                                          | 0.5 | 35        |
| 75 | A study of the substance P innervation of the intermediate zone of the thoracolumbar spinal cord.<br>Journal of Comparative Neurology, 1985, 236, 127-140.                                                                                                                                                                                                 | 1.6 | 34        |
| 76 | Suppression of Corticostriatal Circuit Activity Improves Cognitive Flexibility and Prevents Body<br>Weight Loss in Activity-Based Anorexia in Rats. Biological Psychiatry, 2021, 90, 819-828.                                                                                                                                                              | 1.3 | 34        |
| 77 | Haemorrhage-induced production of Fos in neurons of the lamina terminalis: role of endogenous<br>angiotensin II. Neuroscience Letters, 1993, 159, 151-154.                                                                                                                                                                                                 | 2.1 | 33        |
| 78 | Distribution of angiotensin II receptor binding in the spinal cord of the sheep. Brain Research, 1994,<br>650, 40-48.                                                                                                                                                                                                                                      | 2.2 | 33        |
| 79 | Corticotrophin-Releasing Factor and Arginine Vasopressin Fibre Projections to the Median Eminence<br>of Fetal Sheep. Neuroendocrinology, 1987, 46, 453-456.                                                                                                                                                                                                | 2.5 | 32        |
| 80 | Identification of osmoresponsive neurons in the forebrain of the rat: a Fos study at the ultrastructural level. Brain Research, 1996, 720, 25-34.                                                                                                                                                                                                          | 2.2 | 32        |
| 81 | The Brain as an Endocrine Target for Peptide Hormones. Trends in Endocrinology and Metabolism, 1998, 9, 349-354.                                                                                                                                                                                                                                           | 7.1 | 31        |
| 82 | Osmoregulatory fluid intake but not hypovolemic thirst is intact in mice lacking angiotensin.<br>American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294,<br>R1533-R1543.                                                                                                                                            | 1.8 | 31        |
| 83 | Neural Connectivity in the Mediobasal Hypothalamus of the Sheep Brain. Neuroendocrinology, 2008, 87, 91-112.                                                                                                                                                                                                                                               | 2.5 | 30        |
| 84 | AgRP Neurons Require Carnitine Acetyltransferase to Regulate Metabolic Flexibility and Peripheral<br>Nutrient Partitioning. Cell Reports, 2018, 22, 1745-1759.                                                                                                                                                                                             | 6.4 | 30        |
| 85 | Distribution of Fos in rat brain resulting from endogenously-generated angiotensin II. Kidney<br>International, 1994, 46, 1567-1569.                                                                                                                                                                                                                       | 5.2 | 29        |
| 86 | Rethinking Therapeutic Strategies for Anorexia Nervosa: Insights From Psychedelic Medicine and<br>Animal Models. Frontiers in Neuroscience, 2020, 14, 43.                                                                                                                                                                                                  | 2.8 | 29        |
| 87 | The Action of Leptin on Appetite-Regulating Cells in the Ovine Hypothalamus: Demonstration of Direct Action in the Absence of the Arcuate Nucleus. Endocrinology, 2010, 151, 2106-2116.                                                                                                                                                                    | 2.8 | 28        |
| 88 | A focus on reward in anorexia nervosa through the lens of the activityâ€based anorexia rodent model.<br>Journal of Neuroendocrinology, 2017, 29, e12479.                                                                                                                                                                                                   | 2.6 | 28        |
| 89 | CRF-like immunoreactivity selectively labels preganglionic sudomotor neurons in cat. Brain Research, 1992, 599, 253-260.                                                                                                                                                                                                                                   | 2.2 | 27        |
| 90 | Circumventricular Organs: Gateways to the Brain Multisynaptic Neuronal Pathways From The<br>Submandibular And Sublingual Glands To The Lamina Terminalis In The Rat: A Model For The Role Of The<br>Lamina Terminalis In The Control Of Osmo- And Thermoregulatory Behaviour. Clinical and<br>Experimental Pharmacology and Physiology, 2001, 28, 558-569. | 1.9 | 27        |

| #   | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Some observation on the catecholaminergic innervation of the intermediate zone of the thoracolumbar spinal cord of the cat. Journal of Comparative Neurology, 1981, 200, 529-544.                                                        | 1.6 | 25        |
| 92  | Distribution of Fos-immunoreactivity in rat brain following a dipsogenic dose of captopril and effects of angiotensin receptor blockade. Brain Research, 1997, 747, 43-51.                                                               | 2.2 | 25        |
| 93  | Splicing, <i>cis</i> genetic variation and disease. Biochemical Society Transactions, 2009, 37, 1311-1315.                                                                                                                               | 3.4 | 25        |
| 94  | Neuroendocrine mechanisms underlying bariatric surgery: Insights from human studies and animal models. Journal of Neuroendocrinology, 2017, 29, e12534.                                                                                  | 2.6 | 25        |
| 95  | Activation of kidney-directed neurons in the lamina terminalis by alterations in body fluid balance.<br>American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281,<br>R1637-R1646.                   | 1.8 | 24        |
| 96  | The effect of urocortin on ingestive behaviours and brain Fos immunoreactivity in mice. European<br>Journal of Neuroscience, 2003, 18, 373-382.                                                                                          | 2.6 | 24        |
| 97  | Evaluating anhedonia in the activity-based anorexia (ABA) rat model. Physiology and Behavior, 2018, 194, 324-332.                                                                                                                        | 2.1 | 24        |
| 98  | Angiotensin II Receptor Binding and the Baroreflex Pathway. Clinical and Experimental Hypertension, 1988, 10, 63-78.                                                                                                                     | 0.3 | 23        |
| 99  | CNS Opioid Signaling Separates Cannabinoid Receptor 1-Mediated Effects on Body Weight and Mood-Related Behavior in Mice. Endocrinology, 2011, 152, 3661-3667.                                                                            | 2.8 | 23        |
| 100 | Anti-obesity effects of the combined administration of CB1 receptor antagonist rimonabant and<br>melanin-concentrating hormone antagonist SNAP-94847 in diet-induced obese mice. International<br>Journal of Obesity, 2013, 37, 279-287. | 3.4 | 23        |
| 101 | Hypothalamic control of adipose tissue. Best Practice and Research in Clinical Endocrinology and<br>Metabolism, 2014, 28, 685-701.                                                                                                       | 4.7 | 23        |
| 102 | Hypothalamic-Hypophyseal Vascular Connections in the Fetal Sheep. Neuroendocrinology, 1989, 49, 47-50.                                                                                                                                   | 2.5 | 22        |
| 103 | Central interleukin-10 attenuates lipopolysaccharide-induced changes in food intake, energy expenditure and hypothalamic Fos expression. Neuropharmacology, 2010, 58, 730-738.                                                           | 4.1 | 21        |
| 104 | Characterization of the Projections to the Hypothalamic Paraventricular and Periventricular Nuclei<br>in the Female Sheep Brain, Using Retrograde Tracing and Immunohistochemistry. Neuroendocrinology,<br>2009, 90, 31-53.              | 2.5 | 19        |
| 105 | Immunccytochemical Localization of Angiotensinogen in Rat Brain: Dependence of Neuronal<br>Immunoreactivity on Method of Tissue Processing. Journal of Neuroendocrinology, 1991, 3, 653-660.                                             | 2.6 | 18        |
| 106 | A Rodent Model of Adjustable Gastric Band Surgery—Implications for the Understanding of<br>Underlying Mechanisms. Obesity Surgery, 2009, 19, 625-631.                                                                                    | 2.1 | 18        |
| 107 | Differentiation of the nodal and internodal axolemma in the optic nerves of neonatal rats. Journal of<br>Neurocytology, 1982, 11, 627-640.                                                                                               | 1.5 | 17        |
| 108 | An investigation of the neural mechanisms underlying the efficacy of the adjustable gastric band.<br>Surgery for Obesity and Related Diseases, 2016, 12, 828-838.                                                                        | 1.2 | 17        |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Insights into the neurochemical signature of the Innervation of Beige Fat. Molecular Metabolism, 2018, 11, 47-58.                                                                                                          | 6.5 | 15        |
| 110 | Fos immunoreactivity in the lamina terminalis of adrenalectomized rats and effects of angiotension II type 1 receptor blockade or deoxycorticosterone. Neuroscience, 2000, 98, 167-180.                                    | 2.3 | 14        |
| 111 | Neurons in the lamina terminalis which project polysynaptically to the kidney express angiotensin<br>AT1A receptor. Brain Research, 2001, 898, 9-12.                                                                       | 2.2 | 14        |
| 112 | Hypothalamic Neurogenesis Is Not Required for the Improved Insulin Sensitivity Following Exercise<br>Training. Diabetes, 2014, 63, 3647-3658.                                                                              | 0.6 | 14        |
| 113 | Executive function in obesity and anorexia nervosa: Opposite ends of a spectrum of disordered feeding behaviour?. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 111, 110395.                       | 4.8 | 14        |
| 114 | Review: AT1-receptors in the central nervous system. JRAAS - Journal of the<br>Renin-Angiotensin-Aldosterone System, 2001, 2, S95-S101.                                                                                    | 1.7 | 13        |
| 115 | The endocannabinoid arachidonylethanolamide attenuates aspects of lipopolysaccharide-induced changes in energy intake, energy expenditure and hypothalamic Fos expression. Journal of Neuroimmunology, 2011, 233, 127-134. | 2.3 | 13        |
| 116 | Leptin's metabolic and immune functions can be uncoupled at the ligand/receptor interaction level.<br>Cellular and Molecular Life Sciences, 2015, 72, 629-644.                                                             | 5.4 | 13        |
| 117 | Prevention of the adverse effects of olanzapine on lipid metabolism with the antiepileptic zonisamide.<br>Neuropharmacology, 2017, 123, 55-66.                                                                             | 4.1 | 13        |
| 118 | Brown adipose tissue thermogenesis in the resistance to and reversal of obesity. Adipocyte, 2013, 2, 196-200.                                                                                                              | 2.8 | 12        |
| 119 | Circumventricular Organs. , 2004, , 562-591.                                                                                                                                                                               |     | 11        |
| 120 | Circumventricular Organs. , 2015, , 315-333.                                                                                                                                                                               |     | 11        |
| 121 | Identification of CNS neurons with polysynaptic connections to both the sympathetic and parasympathetic innervation of the submandibular gland. Brain Structure and Function, 2015, 220, 2103-2120.                        | 2.3 | 9         |
| 122 | Androgen manipulation and vasopressin binding in the rat brain and peripheral organs. European<br>Journal of Endocrinology, 1994, 130, 291-296.                                                                            | 3.7 | 7         |
| 123 | Common variation in the MOG gene influences transcript splicing in humans. Journal of Neuroimmunology, 2010, 229, 225-231.                                                                                                 | 2.3 | 7         |
| 124 | Osmotic and hormonal regulation of thirst in domestic animals. Domestic Animal Endocrinology, 1992, 9, 1-11.                                                                                                               | 1.6 | 6         |
| 125 | Adolescent Inhalant Abuse Results in Adrenal Dysfunction and a Hypermetabolic Phenotype with Persistent Growth Impairments. Neuroendocrinology, 2018, 107, 340-354.                                                        | 2.5 | 6         |
| 126 | Gut-brain mechanisms underlying changes in disordered eating behaviour after bariatric surgery: a<br>review. Reviews in Endocrine and Metabolic Disorders, 2021, , 1.                                                      | 5.7 | 5         |

| #   | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Analysis of the Appearance of Fenestrations in the Blood Vessels of the Fetal Sheep Pituitary.<br>Neuroendocrinology, 1991, 53, 222-228.                                                                                                                                  | 2.5 | 4         |
| 128 | Changes in angiotensin type 1 receptor binding and angiotensin-induced pressor responses in the rostral ventrolateral medulla of angiotensinogen knockout mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R411-R418. | 1.8 | 4         |
| 129 | Combination cannabinoid and opioid receptor antagonists improves metabolic outcomes in obese mice. Molecular and Cellular Endocrinology, 2015, 417, 10-19.                                                                                                                | 3.2 | 4         |
| 130 | Central Administration of the Ciliary Neurotrophic Factor Analogue, Axokine, Does Not Play a Role in<br>Long-Term Energy Homeostasis in Adult Mice. Neuroendocrinology, 2016, 103, 223-229.                                                                               | 2.5 | 4         |
| 131 | Circumventricular Organs. , 2004, , 389-406.                                                                                                                                                                                                                              |     | 3         |
| 132 | A method for the identification of pseudorabies virus protein and angiotensin AT1A receptor mRNA expression in the same CNS neurons. Brain Research Protocols, 2001, 8, 153-158.                                                                                          | 1.6 | 2         |
| 133 | The BDNF Val66Met Polymorphism Does Not Increase Susceptibility to Activity-Based Anorexia in Rats.<br>Biology, 2022, 11, 623.                                                                                                                                            | 2.8 | 2         |
| 134 | Localization of Insulin-Like Growth Factor-II Receptors in Rat Brain by in vitro Autoradiography and<br>Immunohistochemistry. Journal of Neuroendocrinology, 1992, 4, 491-503.                                                                                            | 2.6 | 1         |
| 135 | Efferent Neural Projections of Angiotensin Receptor (AT <sub>1</sub> ) Expressing Neurones in the<br>Hypothalamic Paraventricular Nucleus of the Rat. Journal of Neuroendocrinology, 2001, 13, 139-146.                                                                   | 2.6 | 1         |
| 136 | Circumventricular Organs. , 2012, , 594-617.                                                                                                                                                                                                                              |     | 1         |
| 137 | Improving efficacy of the adjustable gastric band: studies of the use of adjuvant approaches in a rodent model. Surgery for Obesity and Related Diseases, 2017, 13, 291-304.                                                                                              | 1.2 | 1         |
| 138 | Neurons and neural pathways mediating the actions of circulating relaxin on the brain. , 2001, , 201-208.                                                                                                                                                                 |     | 1         |
| 139 | Angiotensin Actions on the Brain Influencing Salt and Water Balance. Handbook of Experimental Pharmacology, 2004, , 115-139.                                                                                                                                              | 1.8 | 0         |