Ganguli Babu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6515526/publications.pdf Version: 2024-02-01

		394421	434195
32	2,862	19	31
papers	citations	h-index	g-index
32	32	32	3899
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Electrocatalytic Polysulfide Traps for Controlling Redox Shuttle Process of Li–S Batteries. Journal of the American Chemical Society, 2015, 137, 11542-11545.	13.7	640
2	Deep eutectic solvents for cathode recycling of Li-ion batteries. Nature Energy, 2019, 4, 339-345.	39.5	422
3	Transition Metal Dichalcogenide Atomic Layers for Lithium Polysulfides Electrocatalysis. Journal of the American Chemical Society, 2017, 139, 171-178.	13.7	325
4	Structure, Properties and Applications of Twoâ€Dimensional Hexagonal Boron Nitride. Advanced Materials, 2021, 33, e2101589.	21.0	239
5	Atomic Cobalt Covalently Engineered Interlayers for Superior Lithiumâ€lon Storage. Advanced Materials, 2018, 30, e1802525.	21.0	187
6	Electrocatalysis of Lithium Polysulfides: Current Collectors as Electrodes in Li/S Battery Configuration. Scientific Reports, 2015, 5, 8763.	3.3	181
7	Power from nature: designing green battery materials from electroactive quinone derivatives and organic polymers. Journal of Materials Chemistry A, 2016, 4, 12370-12386.	10.3	161
8	Hexagonal Boron Nitrideâ€Based Electrolyte Composite for Liâ€Ion Battery Operation from Room Temperature to 150 °C. Advanced Energy Materials, 2016, 6, 1600218.	19.5	112
9	Fiber Reinforced Layered Dielectric Nanocomposite. Advanced Functional Materials, 2019, 29, 1900056.	14.9	64
10	Light-Assisted Rechargeable Lithium Batteries: Organic Molecules for Simultaneous Energy Harvesting and Storage. Nano Letters, 2021, 21, 907-913.	9.1	57
11	Manganese buffer induced high-performance disordered MnVO cathodes in zinc batteries. Energy and Environmental Science, 2021, 14, 3954-3964.	30.8	57
12	Quasi-Solid Electrolytes for High Temperature Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 25777-25783.	8.0	54
13	Ionic Liquid–Organic Carbonate Electrolyte Blends To Stabilize Silicon Electrodes for Extending Lithium Ion Battery Operability to 100 °C. ACS Applied Materials & Interfaces, 2016, 8, 15242-15249.	8.0	51
14	Stabilizing polysulfide-shuttle in a Li–S battery using transition metal carbide nanostructures. RSC Advances, 2016, 6, 110301-110306.	3.6	40
15	Made From Henna! A Fast-Charging, High-Capacity, and Recyclable Tetrakislawsone Cathode Material for Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 13836-13844.	6.7	36
16	A common tattoo chemical for energy storage: henna plant-derived naphthoquinone dimer as a green and sustainable cathode material for Li-ion batteries. RSC Advances, 2018, 8, 1576-1582.	3.6	33
17	Achieving Highâ€Quality Freshwater from a Selfâ€Sustainable Integrated Solar Redoxâ€Flow Desalination Device. Small, 2021, 17, e2100490.	10.0	24
18	Two-Dimensional Material-Reinforced Separator for Li–Sulfur Battery. Journal of Physical Chemistry C, 2018, 122, 10765-10772.	3.1	23

Ganguli Babu

#	Article	IF	CITATIONS
19	Nb ₂ O ₅ /reduced Graphene Oxide Nanocomposite Anode for High Power Hybrid Supercapacitor Applications. ChemistrySelect, 2019, 4, 1098-1102.	1.5	23
20	Thermal Conductivity Performance of 2D h-BN/MoS2/-Hybrid Nanostructures Used on Natural and Synthetic Esters. Nanomaterials, 2020, 10, 1160.	4.1	19
21	Graphene-decorated graphite–sulfur composite as a high-tap-density electrode for Li–S batteries. RSC Advances, 2015, 5, 47621-47627.	3.6	18
22	Nature-Derived Sodium-Ion Battery: Mechanistic Insights into Na-Ion Coordination within Sustainable Molecular Cathode Materials. ACS Applied Energy Materials, 2019, 2, 8596-8604.	5.1	14
23	Atomic-Level Alloying of Sulfur and Selenium for Advanced Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 1005-1013.	8.0	14
24	Exploring the Possibility of βâ€Phase Arsenicâ€Phosphorus Polymorph Monolayer as Anode Materials for Sodiumâ€Ion Batteries. Advanced Theory and Simulations, 2020, 3, 2000023.	2.8	14
25	High-K dielectric sulfur-selenium alloys. Science Advances, 2019, 5, eaau9785.	10.3	13
26	All 2D materials as electrodes for high power hybrid energy storage applications. 2D Materials, 2018, 5, 025016.	4.4	12
27	Lithium, sodium and magnesium ion conduction in solid state mixed polymer electrolytes. Physical Chemistry Chemical Physics, 2020, 22, 19108-19119.	2.8	8
28	Nature-Inspired Purpurin Polymer for Li-Ion Batteries: Mechanistic Insights into Energy Storage via Solid-State NMR and Computational Studies. Journal of Physical Chemistry C, 2020, 124, 17939-17948.	3.1	6
29	Photo-Assisted Rechargeable Battery Desalination. ACS Applied Materials & Interfaces, 2022, 14, 30907-30913.	8.0	6
30	Generation of intense phase-stable femtosecond hard X-ray pulse pairs. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119616119.	7.1	4
31	Stacked On-Chip Supercapacitors for Extreme Environments. Journal of Materials Chemistry A, O, ,	10.3	3
32	Good riddance, dendrites. Nature Energy, 2019, 4, 631-632.	39.5	2