Andrea Heinz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6515507/publications.pdf Version: 2024-02-01

ANDREA HEINZ

#	Article	IF	CITATIONS
1	Zein-polycaprolactone core–shell nanofibers for wound healing. International Journal of Pharmaceutics, 2022, 621, 121809.	2.6	15
2	In Situ Transformation of Electrospun Nanofibers into Nanofiber-Reinforced Hydrogels. Nanomaterials, 2022, 12, 2437.	1.9	3
3	Elastic fibers during aging and disease. Ageing Research Reviews, 2021, 66, 101255.	5.0	57
4	Electrospinning Proteins for Wound Healing Purposes: Opportunities and Challenges. Pharmaceutics, 2021, 13, 4.	2.0	66
5	Unique molecular networks: Formation and role of elastin crossâ€ l inks. IUBMB Life, 2020, 72, 842-854.	1.5	35
6	Elastases and elastokines: elastin degradation and its significance in health and disease. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 252-273.	2.3	82
7	Extracellular Matrix Stiffness and Composition Regulate the Myofibroblast Differentiation of Vaginal Fibroblasts. International Journal of Molecular Sciences, 2020, 21, 4762.	1.8	30
8	Expression of elastolytic cathepsins in human skin and their involvement in age-dependent elastin degradation. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129544.	1.1	21
9	Highly Elastic and Water Stable Zein Microfibers as a Potential Drug Delivery System for Wound Healing. Pharmaceutics, 2020, 12, 458.	2.0	19
10	MMP-14 degrades tropoelastin and elastin. Biochimie, 2019, 165, 32-39.	1.3	13
11	Lysyl oxidaseâ€like 2 (LOXL2)â€mediated crossâ€linking of tropoelastin. FASEB Journal, 2019, 33, 5468-5481.	0.2	53
12	A comprehensive map of human elastin crossâ€linking during elastogenesis. FEBS Journal, 2019, 286, 3594-3610.	2.2	26
13	Identification of CD36 as a new interaction partner of membrane NEU1: potential implication in the pro-atherogenic effects of the elastin receptor complex. Cellular and Molecular Life Sciences, 2019, 76, 791-807.	2.4	35
14	Role for <i>Cela1</i> in Postnatal Lung Remodeling and Alpha-1 Antitrypsin–Deficient Emphysema. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 167-178.	1.4	19
15	Degradation of tropoelastin and skin elastin by neprilysin. Biochimie, 2018, 146, 73-78.	1.3	21
16	Production of Elastin-Derived Peptides Contributes to the Development of Nonalcoholic Steatohepatitis. Diabetes, 2018, 67, 1604-1615.	0.3	31
17	Elastin is heterogeneously cross-linked. Journal of Biological Chemistry, 2018, 293, 15107-15119.	1.6	52
18	Elastins from patients with Williams–Beuren syndrome and healthy individuals differ on the molecular level. American Journal of Medical Genetics, Part A, 2016, 170, 1832-1842.	0.7	13

Andrea Heinz

#	Article	IF	CITATIONS
19	Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant <i>Ceratophyllum demersum</i> . New Phytologist, 2016, 210, 1244-1258.	3.5	62
20	Prolyl hydroxylation in elastin is not random. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2169-2177.	1.1	19
21	Molecular-level insights into aging processes of skin elastin. Biochimie, 2016, 128-129, 163-173.	1.3	87
22	Fingerprinting Desmosine-Containing Elastin Peptides. Journal of the American Society for Mass Spectrometry, 2015, 26, 762-773.	1.2	11
23	Modeling autosomal recessive cutis laxa type 1C (ARCL1C) in mice reveals distinct functions of Ltbp-4 isoforms. DMM Disease Models and Mechanisms, 2015, 8, 403-15.	1.2	38
24	Molecular-level characterization of elastin-like constructs and human aortic elastin. Matrix Biology, 2014, 38, 12-21.	1.5	29
25	Investigating the Role of (2 <i>S</i> ,4 <i>R</i>)-4-Hydroxyproline in Elastin Model Peptides. Biomacromolecules, 2013, 14, 4278-4288.	2.6	22
26	In vitro cross-linking of elastin peptides and molecular characterization of the resultant biomaterials. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2994-3004.	1.1	17
27	Elastin-Derived Peptides Are New Regulators of Insulin Resistance Development in Mice. Diabetes, 2013, 62, 3807-3816.	0.3	87
28	Longevity of elastin in human intervertebral disc as probed by the racemization of aspartic acid. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1671-1677.	1.1	21
29	The action of neutrophil serine proteases on elastin and its precursor. Biochimie, 2012, 94, 192-202.	1.3	51
30	Does human leukocyte elastase degrade intact skin elastin?. FEBS Journal, 2012, 279, 4191-4200.	2.2	53
31	Structure and Activity ofAspergillus nidulansCopper Amine Oxidase. Biochemistry, 2011, 50, 5718-5730.	1.2	21
32	Insights into the degradation of human elastin by matrilysin-1. Biochimie, 2011, 93, 187-194.	1.3	33
33	Analysis of solid-state transformations of pharmaceutical compounds using vibrational spectroscopy. Journal of Pharmacy and Pharmacology, 2010, 61, 971-988.	1.2	179
34	Degradation of tropoelastin by matrix metalloproteinasesâ€f–â€fcleavage site specificities and release of matrikines. FEBS Journal, 2010, 277, 1939-1956.	2.2	81
35	Understanding the solid-state forms of fenofibrate – A spectroscopic and computational study. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71, 100-108.	2.0	85
36	Analysis of solid-state transformations of pharmaceutical compounds using vibrational spectroscopy. Journal of Pharmacy and Pharmacology, 2009, 61, 971-988.	1.2	32

Andrea Heinz

#	ARTICLE	IF	CITATIONS
37	Characterizing an Amorphous System Exhibiting Trace Crystallinity: A Case Study with Saquinavir. Crystal Growth and Design, 2008, 8, 119-127.	1.4	23
38	Screening for differences in the amorphous state of indomethacin using multivariate visualization. European Journal of Pharmaceutical Sciences, 2007, 30, 113-123.	1.9	101
39	Quantifying ternary mixtures of different solid-state forms of indomethacin by Raman and near-infrared spectroscopy. European Journal of Pharmaceutical Sciences, 2007, 32, 182-192.	1.9	115